Phil Colarusso US EPA

- Fish Kills in Narragansett Bay
- Anoxia/Hypoxia in Long Island Sound
- Eelgrass declines in Great Bay Estuary
- Benthic community impacts in Boston,
 New Bedford and Gloucester

- Nitrogen/phosphorus concentrations
- Chlorophyll a
- Suspended solids
- Water clarity/light attenuation
- All of the Above

- Duarte et al. (2009) Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets
 - May not be able to get the same system back
 - Trajectory of the recovery will likely be different than that of the decline
 - Ecosystems are complex with both top-down and bottom-up controls

Do we really know what we Know?

- How much light do seagrasses need?
 - Eelgrass roughly 20%
 - Carbon production due to photosynthesis is a function of light and temperature
 - 20% is tied to adult shoot survival, does not guarantee successful completion of entire life cycle (i.e. viable seed production)
 - Seedlings need a much higher quantity

Approaches to Management of Water Quality to protect Seagrass

- Ambient nutrient criteria
 - Indirect effects (Chesapeake Bay Model)
 - Direct effects
- Watershed loading model
 - Correlates system response with nutrient loading rate
- Multimetric approach
 - Looks at multiple parameters that affect water clarity
- System manipulation
 - Addition of shellfish, dredging

Success Stories

- Tampa Bay Estuary
- Chesapeake Bay
- Boston Harbor
- New Bedford Harbor
- Gloucester Harbor