

Canada

Impacts of Invasive Species on Eelgrass in Eastern Canada

Northeast Eelgrass Workshop, Portland Maine February 24, 2009

Presented by : Al Hanson, Canadian Wildlife Service, Sackville NB For the Storm Stranded: Garbary et al and Pelletier et al

Destruction of eelgrass in Nova Scotia by the invasive green crab, (*Carcinus maenus*)

D.J. Garbary, A. G. Miller,N. Seymour & J. WilliamsSt. Francis Xavier UniversityAntigonish, Nova Scotia

The Protagonists

Carcinus maenus aka green crabs

Zostera marina aka eelgrass

Act 1 - The Setting

Antigonish Harbour Eelgrass beds 1945-2000

Antigonish Harbour Eelgrass 2001

Antigonish Harbour 2000 and 2001 Roots and Rhizomes

	2000	2001
Total Biomass $(g m^2 \pm s.e.)$	2133 <u>+</u> 279	175 <u>+</u> 42
Living Biomass (g m ² + s.e.)	1505 <u>+</u> 201	70 <u>+</u> 27
% Living Bioma	ss 71	41

Act 2 - Nova Scotia Survey of Harbour Masters

- Can you comment on how extensive the eelgrass beds are or have been (historically) in your harbour?
- Have you noticed any change in eelgrass abundance in recent years?
- Are there any other changes in the biology of the harbour that you or other harbour users have commented upon? Green crabs? *Codium*?

Eelgrass decline and green crabs (*)

Have Zostera beds in Nova Scotia declined?

• Within the geographic area that includes all reported sites of eelgrass decline, have a significant number of sites declined?

	Observed	Expected
# sites with decline	31	20
# sites with no decline	e 9	20

Chi² = 11.02 alpha < .001

Conclusion: Major decline in many eelgrass beds has occurred in Nova Scotia

Are Green Crabs associated with Eelgrass decline?

• Considering only the declining beds, is there an association with perceived large numbers or increasing numbers of green crabs?

	Observed	Expected
#sites with green crabs	24	16
# sites with no/few green crabs	7	16

Chi 2 = 9.03 alpha < .005

Conclusion: Green crabs are associated with eelgrass decline in Nova Scotia.

Without green crabs are eelgrass beds healthy?

• In healthy eelgrass beds, is there as association between absence of green crabs and the lack of decline in eelgrass?

Expected

15.5

15.5

sites with no green crabsObserved# sites with green crabs24# sites with green crabs7

Chi 2 = 7.76 alpha < .01

• Conclusion:

In sites with healthy eelgrass beds there has been little increase in green crab numbers

Act 3 - Enclosure Experiment Tracadie Harbour

Tracadie Harbour Enclosures Impacts on *Zostera*

- Loss of shoots
 - 116 x 4 x 625 x 1.2 = 348,000 shoots or 87,000 shoots per day
- Loss of Biomass
 - 1186 x 4 x 625 x 1.2 = 3558 kg or 890 kg/day
- Density Changes
 - -direct measure = 3.8 shoots m⁻² d⁻¹
 - -wrack accumulation = 3.5 shoots m⁻² d⁻¹

-mark-recapture = 0.9 shoots m⁻² d⁻¹

Tracadie Harbour Caging Experiment 2002 (seven days)

Cage Condition # Shoots Lost

1	no crabs	7
2	no crahs	5

3 crabs 78

4 crabs 48

Chi ² = 94.2 alpha < 0.001 4 shoots lost $m^{-2} d^{-1}$

The victims - Whole shoots lost from bed !

rhizome

modus operandi - green crab pits

Antigonish Harbour

Loss of eelgrass from the Antigonish Estuary, and concomitant decline in fall staging Canada Geese and Common Goldeneye during 1998-2000 (Seymour *et al.* 2002).

- A major decline occurred in Zostera marina in Nova Scotia
- Green crabs (*Carcinus maenus*) are the generalized cause of this decline
- Impacts unclear but a decline of 50% in migrating Canada Geese in one site.
- Negative impact on detritus-based food chains in coastal waters (e.g., lobster?)
- Negative impact on estuarine biodiversity
- Subsequent limited eelgrass recovery was coincident with green crab decline and return of geese.

Acknowledgements

- Sarah Fraser
- Ray McCarthy
- David Chaisson
- Dawn Moxsom
- Robert Garbary
- Trevor Floyd
- Kwang-Young Kim
- NSERC
- DFO

A Disappearing Act? Eelgrass (*Zostera marina*) Decline in Kejimkujik National Park, Nova Scotia

Aimée Pelletier¹, Kristina Benoit¹, Chris McCarthy² and Bill Freedman³

¹School for Resource and Environmental Studies, Dalhousie University ²Kejimkujik National Park and National Historic Site ³Biology Department, Dalhousie University

Address for Correspondence: aimee.pelletier@dal.ca

Study Site: Kejimkujik Seaside

- 22 km² coastal property
- Two coastal lagoons:
 - St. Catherine's River Basin (141 ha)
 - Little Port Joli Basin (125 ha)

Brylinsky *et al.* 1987
St. Catherine's River Basin: 37 ha of eelgrass

• Little Port Joli Basin: 35 ha of eelgrass

Current Extent: 9 ha (~88% loss)

- Canoe surveys of both lagoons in 2007 and 2008.
- Mapping of bed edge using hand-held GPS on "track"
- Fringing bed in Basin Lake (Little Port Joli Basin) is all that remains.

Current Research

- Eelgrass Condition Monitoring
 - Piloted SeagrassNet methods
- Green Crab Population Estimation
 - Swim transects
 - Mark-Release-Recapture using visual implant elastomer
- Water Quality (bi-monthly, May-September)
 - Nitrate, Phosphate, Ammonia, Silicate
 - CDOM
 - TPM
 - Salinity, DO, pH

Possible Reasons for Loss: Epiphytes

• Epiphyte coverage minimal except some shoots partially covered or knitted together with the invasive golden star tunicate (*Botryllus*

schlosseri).

No signs of eelgrass disease.

Possible Reasons for Loss: Green Crab Damage

- Swim transects and markrelease-recapture study indicate large number of green crabs in bed.
- Large proportion of whole dislodged plants with signs of green crab damage (shredded or neatly clipped sheaths).

Possible Reasons for Loss: Water Quality

- Water clarity and salinity strongly influenced by episodic precipitation events which increase CDOM concentrations due to large freshwater inputs from surrounding wetlands.
- Moderately enriched in DIN and phosphate with respect to nearby open ocean waters, but not considered a threat.
 - Pristine watershed (no point sources)
 - Natural enrichment due to restricted tidal flushing.

2008 an Odd Year?

 A large precipitation event followed
by hot weather and low
winds caused rapid
senescence and stagnation of

the bed in mid-July 2008 a full month earlier than in 2007.

 Mat of dislodged shoots sat on top of bed and decomposed.

What next?

- Continue eelgrass extent and condition monitoring
- Green crab exclosures in eelgrass bed proposed for 2009
- Large-scale removal of green crabs from Basin Lake proposed for 2009

Acknowledgements

- The following provided technical support and field assistance: Cullen Lab (Oceanography Department, Dalhousie University), Parks Canada, Anna-Sarah Eyrich, Marla Bojarski, Brian Starzomski, and Beatrice Amstutz.
- This research was made possible by the generous support of the following funding sources:

Inspiring Minds

