Developing Nitrogen Load-Eelgrass Response Relationships for Small-Medium Sized New England Estuaries

Jim Latimer and Steve Rego US EPA Office of Research and Development Narragansett, RI

A workshop on the Status, Trends, and Conservation of Eelgrass in northeastern United States and Canada February 24-25, 2009 Regency Hotel in Portland, Maine

Overall Objective of Research

To construct nitrogen load eelgrass response models for small-medium sized New England estuaries

Specific Tasks

- Estimate nitrogen load to estuaries
- Determine eelgrass extent along N gradient
- Construct nitrogen load-eelgrass response models, including application of appropriate scaling variables

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Estimation of Nitrogen Load to Watersheds

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Estimation of Nitrogen Load to Watersheds

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Within Watershed Losses (surface and subsurface)

Atmospheric Deposition to Watershed

T	-					Agricultu	re/	Impervio	ous	Impervio	us
	Input	Natural Vegetation		Turf		Horticulture		Roofs/Driveways		Roads/Lots/Runways	
		% retained		% retained		% retained				% retained	
	ug/L	or		or		or		% retained or		or	
		transported	ug/L	transported	ug/L	transported	ug/L	transported	ug/L	transported	ug/L
Atmospheric Deposition (w+d)	100										
Retained on watershed surface		<mark>65%</mark>	65	<mark>62%</mark>	62	<mark>62%</mark>	62	62%	62	0%	0
Transported to Vadose zone		35%	35	38%	38	38%	38	38%	38	100%	100
						Watershed Sub	- Surfac	e			
Loss in Vadose Zone		<mark>61%</mark>	21	<mark>61%</mark>	23	<mark>61%</mark>	23	<mark>61%</mark>	23	<mark>61%</mark>	61
Transported to Aquifer		39%	14	39%	15	39%	15	39%	15	39%	39
Loss in Aquifer		<mark>35%</mark>	5	35%	5	35%	5	35%	5	<mark>35%</mark>	14
				Marine Embayment							
Transport to Marine Embayment		65%	9	65%	10	65%	10	65%	10	65%	25

Natural Vegetation includes: forests, wetlands and other natural lands

Turf includes: lawns and golf courses

Agriculture/Horticulture includes: croplands

Impervious Roofs/Driveways include: roofs and driveways adjoined by turf

Impervious Roads/Lots/Runways include: roads, runways and parking lots that discharge into catch basins

Similar reductions for wastewater and fertilizer nitrogen

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

۲

Building a scientific foundation for sound environmental decisions

۲

Building a scientific foundation for sound environmental decisions

11

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Kg N yr⁻¹

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Determine Eelgrass Extent for Each Estuary

Source Data Overview:

State	Description	Collecti on Date	Sourc e
MA	Data layer compiled from aerial photography collected in 1995, 2001	1995, 2001	MA- DEP
RI	Delineated from 2006 aerial photography.	Summer 2006	RIGIS
СТ	Delineated form 2006 aerial photography of a portion of CT coastline.	Summer 2006	USFWS

Geoprocessing Workflow:

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

22

RESEARCH & DEVELOPMENT

Other Statistical Analyses? (CPA)

Building a scientific foundation for sound environmental decisions

Next Steps

Nitrogen Loading

- Incorporate watershed sinks (e.g., lakes, ponds)
- Distinguish water edge loading from far-field loading
- Include updated landuse data
- Provide output for wet, dry, and average years
- Include more data comparing AED-NLM with SPARROW or other models

Eelgrass

- Look at data from RI more carefully (low load low eelgrass)
- Incorporate factors relevant to eelgrass response (water clarity, substrate type, habitat requirements)
- Evaluate *in situ* measures of eelgrass condition or extent along N gradient

Overall: Try to answer the question of how these data and analyses may be used in the context of developing nitrogen loading limits (loading based criteria) for estuaries?

RESEARCH & DEVELOPMENT