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INTRODUCTION

Rationale

The Gulf of Maine extends from Cape Sable, Nova Scotia, through New Brunswick, Maine,
and New Hampshire to Cape Cod, Massachusetts and includes the Bay of Fundy and Georges
Bank. The combined primary productivity of seaweeds, salt marsh grasses, and phytoplankton
make it one of the worlds most productive system that supports a vast array of animal species,
including many species of invertebrates, fish, seabirds, and marine mammals, some of great
commercial importance. Commercial fisheries are its principal income generating enterprises,
although tourism is very important source of income to many small coastal communities and the
aquaculture industry is rapidly expanding. As coastal populations around the Gulf and its
watersheds have increased, forests and agricultural lands have been converted to industrial and
residential developments. Such changes in land use and increases in population have contributed
to the deteriorating quality of sections of the coastal environment (Crawford and Sowles, 1992;
Dow and Braasch, 1996). Inputs from non-point source and point source pollution are a
significant threat to the near shore environment of the Gulf (Crawford and Sowles, 1992; Dow and
Braasch, 1996). Growth in industrial activity during the 20th century has resulted in a rapid
increase in inputs from chemicals, either mobilized or synthesized by man, into the estuarine and
coastal environments. Many of these chemicals are bioaccumulated to concentrations significantly
above ambient levels. Furthermore, some of these environmental contaminants may also be
present at toxic concentrations, and thus induce adverse biological effects.

In order to protect water quality and commercial uses in the Gulf of Maine, the Agreement on
the Conservation of the Marine Environment of the Gulf of Maine was signed in December, 1989
by the premiers of Nova Scotia and New Brunswick, and the governors of Maine, New
Hampshire and Massachusetts, establishing the Gulf of Maine Council on the Marine
Environment. The overarching mission of this council is to maintain and enhance the Gulfs’
marine ecosystem, its natural resources and environmental quality.

To help meet the council’s mission statement the Gulf of Maine Monitoring Committee was
formed and charged with the development of the Gulf of Maine Environmental Monitoring Plan
(Hayden, 1991). The Monitoring Plan is based on a mission statement provided by the Council:



It is the mission of the Gulf of Maine Environmental Quality Monitoring
Program to provide environmental resource managers with information to
support sustainable use of the Gulf and allow assessment and management of
risk to public and environmental health from current and potential threats.

Three monitoring goals were established to meet the mission statement:

(1) To provide information on the status, trends, and sources of risk to the marine environment in
the Gulf of Maine; ,

(2) To provide information on the status, trends, and sources of marine based human health risks
in the Gulif of Maine; and

(3) To provide appropriate and timely information to environmental and resource managers that
will allow both efficient and effective management action and evaluation of such action.

In support of the mission and to meet the desired goals a project named Gulfwatch was
established to measure Gulfwide chemical contamination.

Gulfwatch Objectives

Gulfwatch is presently a program in which the blue mussel, Mytilus edulis, is used as an
indicator for habitat exposure to organic and inorganic contaminants. Bivalves like M. edulis have
been successfully used as indicator organisms in environmental monitoring programs throughout
the world (see NAS, 1980; NOAA, 1991; and Widdows and Donkin, 1992; Cantillo, 1998) to
identify variation in chemical contaminants between sites, and contribute to the understanding of
trends in coastal contamination (NOAA, 1991; O’Connor, 1992; O’Connor and Beliaeff, 1995;
Widdows et al., 1995; Cantillo, 1998). The blue mussel was selected as the indicator organism for
the Gulfwatch program for the following reasons:

(1) mussels are abundant within and across each of the 5 jurisdictions of the Gulf Program and
they are easy to collect and process;

(2) much is known about mussel biology and physiology;

(3) mussels are a commercially important food source and therefore a measurement of the extent of
chemical contamination is of public health concern;

(4) mussels are sedentary, thereby eliminating the complications in interpretation of results



introduced by mobile species;

(5) mussels are suspension-feeders that pump large volumes of water and concentrate many
chemicals in their tissues; therefore the presence of trace contamination is easier to document;
and the measurement of chemicals in bivalve tissue provides an assessment of biologically
available contamination that is not always apparent from measurement of contamination in
environmental compartments. (water, sediment, and suspended particles).

Gulfwatch has taken two approaches to using marine mussels as bioindicators of
anthropogenic contamination. During the first two years of the program (1991-1992), both
transplanted and native mussels sampled from areas adjacent to the transplant sites were analyzed
for organic and inorganic contaminants (Crawford and Sowles, 1992). Transplanted mussels were
initially collected from relatively pristine sites in each jurisdiction, moved to sites selected for
monitoring, and held there for approximately 60 days. Because of the logistics and the analytical
costs, only two sites per jurisdiction could be monitored each year using this transplant technique.
However, transplant experiments provided an assessment of the short-term exposure (on the order
of weeks to months) to bioavailable contaminants throughout the region. In 1993 and 1994, only
indigenous mussels were sampled, although a greater number of sites were monitored compared to
the years when mussels were transplanted (Chase et al., 1996b; Sowles et al, 1996). Sampling of
native mussels provided an assessment of long-term exposure to bioavailable contaminants (on the
order of months to a year). The 1997 sampling year followed the protocol for 1993 and 1994,
sampling indigenous mussels from three to seven sites in each jurisdiction.

In addition to documenting the level of contaminants in mussel tissue, biological variables,
including shell growth and condition index, have been measured as a means. to determine the
response of organisms to stress under different concentrations of contaminant burden. Growth is
often one of the most sensitive measures of a contaminant’s effect on an organism (Sheehan, 1984;
Sheehan et al., 1984; Howells et al., 1990). Shell growth has often been used as a measure of
environmental quality and pollution effects as the rate of growth is a fundamental measure of
physiological fitness/performance (Widdows and Donkin, 1992; Salazar and Salazar, 1995) and
thcréfore, is a direct, integrative measure of the impairment of the organisms physiology.
However, growth measurements are dependent on protocols that are only used when transplanting
of mussels occurS, thus growth was not measured in 1997.

Condition Index (CI) has been used as an indicator of the physiological status of the mussels.
It relates the tissue wet weight to shell volume and is a measure traditionally used by shellfishery
biologists (Widdows, 1985). Because gonadal weight is a significant contributor to total body



weight just prior to spawning, CI also reflects differences in the reproductive state of the sampled
mussels. Since gonadal material tends to have low concentrations of metals (LaTouche and Mix,
1981), tissue metal concentrations may be reduced in mussels having a high CI due to ripened:
gonads. Organic contaminants, however, would tend to partition into both somatic and gonadal
lipids, and may be less impacted by changes in CI that are due to the presence of ripe gametes.
Since variable amounts of ripe gametes may be found in some mussel populations even in late fall
(Kimball, 1994), the relationship between CI and contaminant concentrations must be carefully
considered. CI is measured on all mussel samples every year, including 1997.

The objective of the first two years (1991 and 1992) of the Gulfwatch program was to evaluate
the feasibility of the project and the level of cooperation required through collecting comparative
data from different locations in the Gulf of Maine. The sites that were selected fell into the
following two categories: test sites that were suspected or known to be contaminated and reference
sites that were free of any known contaminant source. After the success of the pilot studies in
1991 and 1992, it was recognized that there should be a broader, or Gulf-wide orientation of the
program in addition to known contaminated and reference sites within each jurisdiction. As such,
a three year cycle was initiated in 1993. In 1993 and 1994 the sample design was expanded.
Native mussels were sampled in as many as seven new locations within each jurisdiction (state or
province), where feasible, to increase the geographic coverage. However, one location in each
jurisdiction was chosen as a baseline station, to be resampled every year. This approach increased
the chance of locating unforseen environmental contamination. Transplant experiments were again
conducted at two sites in each jurisdiction in 1995. This three-year cycle, with transplants being
conducted at two sites during one year and indigenous mussels alone being sampled at 2-7 sites per
jurisdiction during the other two years, will be repeated for the remaining years of the Gulfwatch
Program. This sampling design allows the program investigators to assess both short-term and _
long-term contaminant exposures. The 1997 samples are the second sampling of sites previously
sampled in 1994, and which will be resampled in 2000. .



METHODS

The 1997 Gulfwatch sample collection and analysis is the fifth year of the program’s nine year
sampling design (see Sowles et al., 1997). The 1997 sampling represents the second year of the
second 3-year cycle. As such, stations that were sampled in 1997 were the same stations sampled
in 1994. Therefore, in addition to spatial analysis, temporal analysis can be performed on the
contaminant concentrations for all sites.

1997 Sampling Locations

The stations sampled in 1997 are shown in Figure 1 and Table 1. There were S sites in
Massachusetts, 3 in New Hampshire, 7 in Maine, 3 in New Brunswick, and 4 in Nova Scotia,
including the following benchmark sites from previous years to enable trend analysis: Sandwich,
MA, Clarke Cove, ME/NH, Kennebec River, ME, Chamcook, NB, and Digby, NS. Until 1996,
Hospital Island (NBHI) was the benchmark site for New Brunswick. However in 1996 no
mussels were found at this site. As a result, Chamcook, NB (NBCH), a site located
approximately 1.5 km from Hospital Island, is now sampled as the benchmark station for New
Brunswick (see Chase et al., 1997).

Field Procedures

Details regarding the mussel collection, measurement, and sample preparation are published in
Sowles et al. (1997), however a summary of the procedures are given below. The mussels
collected were intended to be Mytilus edulis. However, a similar species of Mytilus, Mytilus
trossulus was identified in some 1993 Bay of Fundy samples (Sowles et al., 1996). This species
has a slower growth rate than M. edulis and attains a maximum size of approximately 50-60 mm,
compared to 70 - 80 mm for the blue mussel (Bayne, 1976). These physiological differences
result in species-specific differences in shell allometric growth. In addition, it has been shown that
there are interspecific differences in concentrations of certain metal (Cu, Ni, Pb, Hg and Zn) and
organic (XPAH,,) contaminants (Mucklow, 1996) Although an inter-species allometric gradient is

present at all sites inhabited by both species, M. trossulus can often be distinguished from M.
edulis by its higher shell length:height ratio (Lobel et al., 1990; Freeman et al., 1992; Mucklow,
1996; Jones et al., 1998).
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Table 1. Gulf of Maine, Gulfwatch study site locations sampled in 1997.

CODE

MASN
MADX
MABI
MAWN
MAIP
NHRH
NHDP
MECC
MESA
MEPH
MEPR
MEKN
MEUR
MEMR
MECK
NBNR
NBCH
NBLB
NSAR
NSFI
NSDI
NSSC

SITE LOCATION

Sandwich, MA
Duxbury, MA
Brewster Island, MA
Winthrop, MA
Ipswich, MA
Rye Harbor, NH
Dover Point, NH
Clarke Cove, ME/NH
Saco River, ME
Portland Harbor, ME
Presumpscot River, ME
Kennebec River, ME
Union River, ME
Machias River, NB
Cobscook Bay, ME
Niger Reef, NB
Chamcook, NB
Limekiln Bay, NB
Apple River, NS
Five Islands, NS
Digby, NS
Spechts Cove, NS

LATITUDE

41°45.73' N
42°02.01'N
42°20.55 N
42°21.89° N
42°42.04’ N
43°00.00° N
43°07.09° N
43°4595°'N
43°26.52’ N
43°38.75 N

43°41.60° N

43°47.50° N
44° 15.60° N
44°41.20' N
44° 5428’ N
45°60.30’ N
45°07.40° N
45°51.35'N
45°27.60° N
45°39.50° N
44°38.10' N

-44° 3230’ N

LONGITUDE

70° 28.38° W
70°40.3' W
70° 52.68° W
70° 57.85' W
70°47.44° W
70° 1442’ W
70°49.39° W
70° 10.75' W
70°21.08° W
70° 15.50° W
70° 15.00° W
69° 47.60° W
68° 43.80° W
67°23.50' W
67°03.25° W
69°23.50' W
67° 03.20' W
69° 3541’ W
64° 51.80° W
64°06.7’ W
65°44.7 W
65°52.20°' W



All field sampling was conducted in the fall of 1997. Sampling was carried out as outlined in
Sowles et al. (1997). Collection times were set to avoid collecting during or shortly after periods
when stormwater runoff and wave resuspension of bottom sediment could result in enhanced
uptake and accumulation of sediment in the mussel gut. The presence of sediment in the mussels
was suspected to be the cause of the elevated concentrations of some metals (iron, aluminum and
associated metals) (Lobel et al., 1991; Robinson et al., 1993) in previous reports (Sowles et al.,
1994, 1996, Chase et al., 1996a, b, 1997).

Mussels were collected from 4 discrete areas within a segment of the shoreline that is
representative of local water quality. Using a wooden gauge or a ruler, 45-50 mussels of 50-60
mm shell length were collected. The mussels were cleaned of all sediment, epibiota, and other
accretions in clean seawater from the collection site, placed in clean glass containers, then
transported to the lab in coolers.

Laboratory Procedures

In the laboratory, individual mussel lengths, widths and heights (as defined by Seed, 1968)
were determined to the nearest 0.1 mm using vemier calipers. Using plastic or stainless steel
wedges, mussels were shucked directly into appropriately prepared containers for metal and
organic analysis, respectively (for details see Sowles et al., 1997). Composite samples (20
mussels/composite; 4 composites/station) were capped, labelled and stored in a freezer at -15°C.

While a number of condition indices have been proposed over the years (Seed, 1968), the
Gulfwatch Condition Index (CI) has been defined as:

CI = tissue wet weight (mg) / length (mm) * width (mm) * height (mm)
CI was determined on a minimum of 30 mussels.

Anaiytical Procedures

Analytical pfocedures used followed those reported for the previous years (Sowles et al.,
1994, 1996; Chase et al., 1996a, b, 1997). Table 2 contains a summary of trace metal and organic
compounds measured.



TABLE 2. Inorganic and organic contaminants analyzed in mussel tissues from the Gulf of Maine

in 1997.

INORGANIC CONTAMINANTS

Metals

Ag, Al, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Zn

ORGANIC CONTAMINANTS

Aromatic Hydrocarbons

Naphthalene
1-Methylnaphthalene
2-Methynaphthalen
Biphenyl :
2,6-Dimethylnaphthalene
Acenaphthylene
Acenaphthene
2,3,5-Trimethylnaphthalene
Fluorene

Phenanthrene
Anthracene
1-Methylphenanthrene
Flouranthene

Pyrene

Benzo [a] anthracene
Chrysene

Benzo [b] flouranthrene
Benzo [k] flouranthrene
Benzo [a] pyrene

Benzo [e] pyrene
Perylene

Indeno [1,2,3-cd] pyrene
Dibenzo [a,h] anthracene
Benzo [g,h,i] perylene

Chlorinated Pesticides

Hexachlorobenzene (HCB)
gamma-hexachlorocyclohexane (HCH)
Heptachlor

Heptachlor epoxide

Aldrin

Mirex

cis-Chlordane
trans-Nonachlor

Dieldrin

Alpha-Endosulfan
beta-Endosulfan

DDT and Homologues

2,4’-DDE 4,4’-DDE
2,4’-DDD 4,4’-DDD
24’-DDT 4,4’-DDT

PCB Congeners

PCB 8, PCB 18, PCB 28, PCB 29, PCB 44,
PCB 50, PCB 52, PCB 66, PCB 77,

PCB 87, PCB 101, PCB 105, PCB 118,
PCB 126, PCB 128, PCB 138, PCB 153,
PCB 169, PCB 170, PCB 180, PCB 187,
PCB 195, PCB 206, PCB 209



Metals

Inorganic contaminants were analyzed at the State of Maine Health and Environmental Testing
Laboratory (Augusta, ME). Analyses for mercury were done on a subsample of 1 to 2 g of wet
tissue and measured by cold vapor atomic absorption on a Perkin Elmer Model 503 atomic
absorption spectrometer. Analyses for all other metals were conducted on 5 to 10 g of wet tissue
dried at 100°C. Zinc and iron were measured by flame atomic absorption using a Perkin Elmer
Model 1100 atomic absorption spectrometer. All remaining metals (Ag, Al, Cd, Cr, Cu, Ni and
Pb) were run using Zeeman background corrected graphite furnace atomic absorption on a Varian
Spectra AA 400. The analyte detection limits for the metals in pg/g dry weight are as follows; Ag,
0.1; Al, 3.0; Cd, 0.2; Cr, 0.3; Cu, 0.6; Fe, 6.0, Hg, 0.1, Ni, 1.2, Pb, 0.6; and Zn, 1.5.

Organics

Organic contaminants in mussel samples were analyzed at the Environment Canada, ECB
Laboratory in Moncton, NB. The analyte detection limits ranged from 3.6 to 12 ng/g for aromatic
hydrocarbons, from < 0.7 to 2.8 ng/g for PCB congeners, and from <0.7 to 1.8 ng/g for
chlorinated pesticides. Eighteen of the PCB congeners identified and quantified correspond to
congeners analyzed by the National Oceanographic and Atmospheric Administration’s (NOAA)
National Status and Trends (NS&T) Program designated congeners. Other organic compounds
selected for analysis are also consistent, for the most part, with NOAA National Status and Trends
mussel monitoring (NOAA, 1989).

The analyses of mussel tissue samples follow the diagram shown in Figure 2 and are
summarized below. A description of the full analytical protocol and accompanying performance
based QA/QC procedures are found in Sowles et al. (1997), and more comprehensively in Jones et
al. (1998). '

Tissue samples were extracted by homogenization with an organic solvent and a drying agent.
Solvent extracts were obtained by vacuum filtration, and biomatrix interferences were separated
from target analytes in extracts by size exclusion chromatography. Purified extracts were subjected
to silica gel liquid chromatography which provided a non-polar PCB/chlorinated pesticides fraction
and a polar chlorinated pesticide fraction. PCBs and pesticides were analyzed by High Resolution
Dual Column Gas Chromatography/Electron Capture Detection (HRGC/ECD). Following PCB
and pesticide analysis, the two fractions were combined and the resulting extract was analyzed for
aromatic hydrocarbons by High Resolution Gas Chromatography/Mass spectrometry(HRGC/MS).
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Figure 2. Analytical flow chart for organic analyte determination at the Environment
Canada Laboratory in 1997. HRGC-MS, high resolution gas chromatography
/massspectrometry; HRGC-ECD, high resolution dual column gas

chromatography/electron capture detection; GPC, Gel permeation
chromatography; SS., Stainless steel.

11



uality Assurances/Quality Control

Standard laboratory procedures for metals incorporated method blanks, spike matrix samples,
duplicate samples, surrogate addition and standard oyster tissue (SRM 1566A). The method
blanks were inserted: three at the beginning of the run, one at the end, and six at various intervals
during the run. Duplicate samples and matrix spike recoveries were conducted on 15% of the
samples.

The Moncton laboratory participated in the NIST Status and Trends Intercomparison Marine
Sediment Exercise IV and Bivalve Homogenate Exercise. ‘Internal quality control and method
performance specifications are described in the Environment Canada Shellfish Surveillance
Protocol (Sowles et al., 1997; Jones et al., 1998). The protocol includes mandatory QC measures
with every sample batch including method blanks, spike matrix samples, duplicate samples,
surrogate addition, and certified reference materials (SRM, 1974a). The protocol specifies the
performance criteria relevant to method accuracy, precision, and detection limits and data reporting
requirements for the analysis of organic contaminants in shellfish samples.

Statistical Methods

Data Analysis

All metal data were log;, transformed to correct for heterogeneity of variances. In several

cases there were non-detectable (ND) data values. If all 4 replicates from a given site showed ND
Concentrations, the contaminant level was recorded as ND, but if at least one of the replicates was
greater than the detection limit, then the other replicates were recorded as 1/2 the detection limit.
Arithmetic means were used to summarize the results of replicate samples and are used in all
subsequent tables and figures. In addition, geometric means were calculated for each metal for
comparison with other data sets (O’Connor, 1992). The standard deviation (s) around the
geometric mean (sg) was calculated as:

Sy = antilog (s,) = 105 (D

where s; = the standard deviation around the mean of the log;, transformed data (Snedecor and
Cochran, 1967).
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Total PAH (XPAH,,), total PCB (XPCB,,) and total pesticides (X TPEST),) values were

created from the sum of all individual compounds or congeners with values greater than the
detection limit for the compound. Total DDT (3DDTy) is the sum of o,p’-DDT and p,p’-DDT and

homologues (0,p’-DDE, p,p’-DDE, o,p’-DDD and p,p’-DDD). Organic variables in which all
replicate measurements were below the detection limit were treated as zero. All data were log;

(x+1) transformed to correct for non-normality. Arithmetic means were used to summarize the
results of replicate samples and are used in all subsequent tables and figures. In addition,
geometric means were calculated for regional comparison. The standard deviation around the
geometric means were calculated as described (Eq. 1).

Spatial Analysis

Arithmetic means and standard deviations of all values for each metal and organic contaminant
at each station were calculated. Arithmetic means were calculated since, with a few exceptions,
metals and organics at each station were normally distributed as demonstrated by applying
Kolmogorov-Smirnov test using p=0.05 (SPSS, 1996). Graphs of the mean concentrations
(£SD) are presented for all stations sampled. Differences in metal and organic contaminant
concentrations among sites within each jurisdiction were analyzed using one-way analysis of
variance (ANOVA), followed by Tukey-Kramer multiple comparison test of means. A probability
of < 0.05 was chosen as the level of significance. For analysis, Clark Cove, Maine (MECC) is
discussed as being a New Hampshire site because it is located in the Great Bay/Piscataqua River
watershed, and therefore most comparable to other sites in New Hampshire.

Temporal Analysis

Temporal analysis was performed on the benchmark sites (n=5 sites, n=5 years) and the 1997
sampling sites (n=18 sites, n=2 years). Tissue contaminant concentrations at the benchmark sites
[MASN, MECC, MEKN, NBHI (NBCH), and NSDI] were analyzed for temporal trends using a
repeated measures ANOVA. Contaminant concentrations from these sites from 1993 - 1997 were
tested to determine whether the change in contaminant concentration (metal and organic) was
consistent among sites given the initial differences in the various sites. As previously mentioned,
tissue concentrations from NBCH were used in the temporal analysis in place of NBHI. In a
previous report (see Chase et al., 1997) a one-way ANOVA was performed on metal and organic
contaminant concentrations using 1993-1995 concentrations at NBHI and 1996 concentrations at
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NBCH. Results of the analysis revealed that the tissue concentrations of two metals (Cr and Ni)
and YPAH,, in mussels from NBCH were significantly lower in 1996 (Chase et al., 1997). As

such, any conclusions regarding the status of these contaminants should be done with caution.

In addition to temporal analysis of benchmark sites, tissue concentrations from the 1997
sampling sites were compared to concentrations from samples at these sites taken in 1994.
Concentrations in 1994 and 1997 were compared at each site using a student t-test. A probability
of <0.05 was chosen as the level of significance.
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RESULTS AND DISCUSSION

Field erations and Logistics

Field collection proceeded as planned in all jurisdictions with the exception of Nova Scotia.
The Nova Scotia station at Barrington Passage (NSBP) was not sampled in 1997 as there were no
mussels discovered at this site.

Metal Contaminants

Table 3 contains the metal concentrations (arithmetic mean * SD, pg/g dry weight) for mussels
from all sites sampled in 1997. Metal concentrations for each of the composite samples (n=4) are
provided in Appendix A. Overall metal concentrations for indigenous mussels are given as
geometric means (Table 3) to compare with NOAA (O’Connor, 1992) National Status and Trends
program (NS&T) concentrations for Gulf of Maine sites (Table 4). All geometric means for Ag,
Cd, Cr, Hg, and Ni were greater in Gulfwatch samples than in NOAA, NS&T samples.
Moreover, the levels of Ag and Hg were greater than the calculated “high value” (geometric mean
plus one standard deviation) for NOAA mussels. Similar results were observed in previous
reports (Sowles et al., 1994, 1996; Chase et al., 1996a, b, 1997). This is not surprising given that
half of the Gulfwatch stations were chosen as potentially contaminated areas, whereas many of the
NS&T stations were essentially reference stations that were chosen to avoid acute human activity
or known sources of contamination.

Spatial Variation in Metal Concentrations

Figures 3 to 6 show the concentrations of the metals measured in the tissue of M. edulis at the
1997 sampling stations presented from south to north. In addition, the mean tissue metal
concentrations at each of the Gulfwatch sites are compared to two “benchmark” values for each
metal previously reported by Sowles (1993) from 23 Maine reference sites (Table 5): (1) the
arithmetic mean for each metal concentration (Maine Reference Mean or ME-RM); and (2) the
arithmetic mean plus three standard deviations (Maine High Value or ME-HV; referred to by
Sowles as the “anomalous value”). These Maine reference stations are located in areas where
anthropogenic contamination should be low. Maine Reference concentrations should therefore be
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Table 4. NOAA, National Status and Trends Mussel Watch summary statistics for

the Gulf of Maine mussel samples collected in 1990 (ug/g dry weight)
(NOAA 1989).

Ag Al Cd Ct  Cu Fe  Hg Ni Pb Zn

Geometric ' .

mean 022 203 1.10 139 103 312 0.13 1.18 297 92
"high 0.51 387 152 278 116 482 031 172 6.75 113
value"*

* Logarithmic mean (geometric) plus one standard deviation (O'Connor 1992)
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Table 5. Summary statistics for mussels collected at twenty-three Maine reference

stations (ug/g dry weight) (Sowles, 1993). ME-RM = Arithmetic, reference,
mean; ME-HV = Maine high value = Arithmetic mean plus three times the

standard deviation.

Ag Al Cd Cr Cu Fe Hg 'Ni Pb Zn

MERM 012 - 175 153 69 - 012 18 260 89
SD 009 - 046 066 128 - 012 038 LI3 155
MEHV 040 - 314 351 107 - 048 290 600 136
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ME-RM (straight line) and the high value, ME-HV (dashed line) from the Maine reference

pg/g dry weight) in mussels at the Gulf of Maine Stations in 1997. The reference mean,
data (Sowles, 1993) are shown for comparison. ND=not detectable.

Figure 3. Distribution of silver, lead and chromium tissue concentrations (arithmetic mean +/- SD,
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Figure 4. Distribution of zinc, nickel, and mercury tissue concentrations (arithmetic mean +/- SD,
ug/g dry weight) in mussels at the Gulf of Maine Stations in 1997. The reference mean,
ME-RM (straight line) and the high value, ME-HV (dashed line) from the Maine reference
data (Sowles, 1993) are shown for comparison. ND=not detectable.

20



CADMIUM

3.14

1.75

Z XA Z T <D - - gmaEgn AL
FE2ESESOREESESEZ00652
Sis<sEzulEEgupgEessgezz?
SS*S2ZZ525555s55%2z~%

ZXEZ“‘E“U<E¢Z'¢MM¢E&¢EEU
w3 -t = U B B 4 - w
<§§E§§=8mwmﬁa§8ngmm%%%
SS*S®ZZ==2353555s5%2z%2%

Figure 5. Distribution of cadmium and copper tissue concentrations (arithmetic mean +/- SD,
Mg/g dry weight) in mussels at the Gulf of Maine Stations in 1997. The reference mean,
ME-RM(straight line) and the high value, ME-HV (dashed line) from the Maine reference
data (Sowles, 1993) are shown for comparison.
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Figure 6. Distribution of iron and aluminum tissue concentrations (arithmetic mean +/- SD,
Mg/g dry weight) in mussels at the Guif of Maine Stations in 1997. The mean
(straight line) and the high value (dashed line) from the NS&T data (O'Connor, 1992)
are shown for comparison.
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lower than that observed at several of the Gulfwatch stations.

In Table 3, sites were grouped by jurisdiction and ANOVA and Tukey Kramer tests were
employed to examine differences among sites within a jurisdiction in 1997. Differences among all
sites (22 stations throughout 5 jurisdictions) were not statistically examined.

Silver (Ag)

Elevated silver exposure concentrations have been shown to coincide with regions receiving
municipal sewage (Sanudo-Wihelmy and Flegal, 1992; Buchholz ten Brink et al., 1996). Mussel
tissue concentrations of Ag ranged from non-detected (ND) at 13 sites (NHDP, MECC, MESA,
MEPH, MEKN, MEMR, MECK, NBNR, NBLB, NSAR, NSFI, NSDI, NSSC) to 1.01 + 0.03
ug/g dry weight at MASN (Table 3). As in previous reports (see Sowles et al., 1994, 1996; Chase
et al., 1996a, b, 1997) the concentration of Ag in mussel tissue is significantly higher in the
southern Gulf of Maine stations (Figure 3). Ag concentrations at MASN were significantly higher
than all other sites in 1997 and exceed the Maine high value (ME-HV) of 0.40 pg/g dry weight for
the Maine reference stations. Exceptionally high silver concentrations at MASN were also
observed in the Gulfwatch 1993 to 1996 samples, but not in the 1992 samples (Sowles et al.,

- 1994). These high Ag concentrations are unusual since there are no POTW outfalls or industrial
effluent in the area. Most sites examined in 1997 were below the Maine reference mean of 0.12
ug/g dry weight with the exception of MADX, MABI, MAWN, MAIP and MEUR.

Lead (Pb)

The concentration of lead ranged from a value of 0.47 £ 0.13 pg/g dry weight (NBCH) to
6.36+1.84 ug/g dry weight (MEPH) (Table 3, Figure 3). Mean concentrations of Pb in mussels
from coastal regions can range from 1 to 16 pg/g dry weight (Fowler, 1990). Nine of the twenty-
two sites sampled in 1997 exceed the Maine reference concentrations (ME-RM) of 2.6 £ 1.1 ug/g
dry weight, only MEPH exceeded the ME-HV (6.00 ug/g dry weight ). The close proximity to the
Portsmouth Naval Shipyard may account for the elevated lead Concentrations (5.1 + 1.1 pg/g dry
weight) in mussels at MECC. The Jamaica landfill and defense reutilization and Marketing Office
on Seavey Island are sites of known sources of lead contamination to Portsmouth Harbor where
waste plating sludge and lead batteries, respectively were disposed and stored (NCCOSC, 1994).

Analysis of thé concentrations of Pb in mussel tissue within each jurisdiction (Table 3) showed
- that there were significant differences between sites within all jurisdictions. Concentrations of Pb
were consistently low among sites in New Brunswick.

23



Chromium (Cr)

The concentration of chromium exceeded the ME-RM (1.53 +0.66 ng/g dry weight ) at sites
in all jurisdictions except New Brunswick, although not the ME-HV (3.51 pg/g dry weight). The
lowest concentration was at NBCH (0.68 £ 0.10 pg/g dry weight) and the highest at MECC (3.01
1 0.33 pg/g dry weight ) (Table 3, Figure 3). Elevated concentrations at MECC probably reflect
historical tanning industry discharges (Capuzzo and Anderson, 1973; Jones et al., 1992).
Concentrations of Cr were significantly higher in the Nova Scotia sites than sites sampled in
northern Maine and New Brunswick. Higher concentrations of Cr have been found along the
coast of Nova Scotia and are suspected to be the result of higher bedrock exposures (Wells et al.,
1996). Analysis of the mussel tissue concentrations of Cr within each jurisdiction (Table 3)
revealed that there were significant differences among sites in all jurisdictions with the exception of
New Hampshire and Nova Scotia.

Zinc (Zn) »

Zinc concentrations generally reflect human activity associated with tire wear, galvanized
materials and industrial discharges. Eight sites had concentrations greater than the ME-RM (89 +
16 pg/g dry weight ). Only MABI had concentrations greater than the ME-HV (136 ug/g dry
weight) (Table 3, Figure 4). The lowest concentration of Zn measured was at MEMR (42+23 pg/g
dry weight) and the highest was at MECK (124+32 pg/g dry weight). Concentrations of zinc in
bivalves of British estuaries often exceed 1000 pg/g dry weight, but many may be greater than
4000 pg/g dry weight in contaminated systems (Bryan et al., 1992). Analysis of the mussel tissue
concentrations of Zn within each jurisdiction revealed that there were significant differences among
sites in each jurisdiction with the exception of New Hampshire and New Brunswick (Table 3).

Nickel (Ni)

The concentration of nickel ranged from ND at MEKN to 2.23 + 0.22 pg/g dry weight at
NSAR (Table 3, Figure 4). The tissue concentration of Ni at NSFI and NSAR exceeded the ME-
RM of 1.8 + 0.4 ug/g dry weight. Such high concentrations in Nova Scotia stations may reflect the
degrée of exposed bedrock along the coast of Nova Scotia (Wells et al., 1996). Analysis of the
mussel tissue concentrations of Ni within each jurisdiction (Table 3) revealed that the level of Ni

varied greatly within jurisdictions. Only in New Hampshire, was the level of Ni consistent among

sites.

,
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Mercury (Hg)

The concentration of mercury in mussel tissue ranged from a value of 0.16 + 0.05 pug/g dry
weight at NBCH to 0.70 + 0.39 pg/g dry weight at NHDP (Table 3, Figure 4). Mercury exceeded
the ME-RM of 0.12 +0.12 pg/g dry weight at all sites except NBCH and NBLB. MADX, MABI,
MAWN, MAIP, NHRH, NHDP, MECC, MESA, MEPH, and NSAR exceed the ME-HV of 0.48
ug/g dry weight. NHDP and MECC lie downstream from known historical mercury sources,
including some that are suspected to be related to the Portsmouth Naval Shipyard (NCCOSC,
1994). In a recent review of the first five years of the Gulfwatch program tissue concentrations of
Hg were discussed as being unusually high and a possible concern (Jones et al., 1998). Mean
values of Hg in mussels (Myrilus spp.) from various coastal regions worldwide are about 0.1 to
0.4 ng/g dry weight (Kennish, 1996). Over half of the Gulfwatch sites sampled in 1997 exceed
the upper limit of this estimate. Mytilids from some regions (e.g., northern Mediterranean and
southwest Pacific) have Hg concentrations as high as 7.0 pug/g dry weight (Kennish, 1996).
Analysis of the mussel tissue concentrations of Hg from sites within each jurisdiction (Table 3)
showed that the level of Hg varied in Massachusetts and Nova Scotia, however, values were
consistent in New Hampshire, Maine and New Brunswick.

Recent studies have shown that a mercury problem exists in freshwater systems of the
northeast and maritimes (Welch, 1994; DiFranco et al., 1995; and Evers et al., 1996). About 47%
of mercury deposition in the region originates from sources within the region, 30% from U.S.
sources outside the region, and 23% from the global atmospheric reservoir (NESCAUM, 1998).
On June 8, 1998, the New England governors and eastern Canadian premiers agreed to cut
regional mercury emissions from power plants, incinerators, and other sources in half by the year
2003 (Boston Globe -6/9/98). However, until recently few coastal systems have been known to
be affected by Hg pollution. In Maine’s Penobscot Bay watershed, the origin of contaminants is
likely to be from a combination of point and nonpoint sources, with over 750 pounds from the
HoltraChem Manufacturing chlor-alkali plant in Orrington, ME. A series of recent chemical spills
have focused concern on this facility, as these accidents have resulted in some of the highest
sediment mercury levels (>100 ppm) in the U.S. Other areas in the Gulf of Maine also have
elevated (5-20 ppm) sediment mercury concentrations (Buchholtz ten Brink et al, 1997). Thus,
data on mussel tissue mercury levels are important to help assess current contamination problems
and the effects of discharge reduction efforts in the future.

Cadmium (Cd)
Cadmium is widely used in industry for batteries, plating, stabilizers and as a neutron absorber
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in nuclear reactors. The concentration of cadmium in mussel tissue ranged from 0.72 = 0.08 pg/g
dry weight at NBNR to 2.70 £ 0.32 ug/g dry weight at NSAR (Table 3, Figure 5). Mean
concentrations of cadmium in mussels (Myrilus sp.) from several coastal regions world-wide range
from approximately 1 to 5 pg/g dry weight (Fowler, 1990). All values were below the ME-RM of
1.75 £ 0.46 pg/g dry weight with the exception of NHDP, MECK, and NSAR. No values
exceeded the ME-HV (3.14 pg/g dry weight). Within the jurisdictions, the concentration of Cd
varied with significant differences among sites in Massachusetts, New Brunswick, and Nova
Scotia.

Copper (Cu)

The level of copper in mussel tissue ranged from 4.1 + 2.1 pg/g dry weight at MEMR to 7.4 £
1.1 pg/g dry weight at MAWN (Table 3, Figure 5). Eight sites exceeded the ME-RM (6.9 + 1.6
ng/g dry weight). No sites exceeded the ME-HV (10.9 ug/g dry weight). Analysis of the mussel
tissue level of Cu within each jurisdiction showed that the level of Cu was fairly consistent (Table
3). There were no significant differences among sites in all jurisdictions with the exception of
Nova Scotia.

Iron (Fe) and Aluminum (Al)

The concentration of iron in mussel tissue ranged from 190 + 95 pg/g dry weight at MEKN to
1085 £ 350 ug/g dry weight at NSFI (Table 3, Figure 6). There were no reference values for Fe
from Maine stations with which to compare our data, but comparisons could be made to NS&T
values. Analysis of the mussel tissue concentrations of Fe within jurisdictions (Table 3) showed
that there were significant differences among sites within all jurisdictions.

The concentration of aluminum in mussel tissue ranged from 90 £ 13 ug/g dry weight at
MADX to 975 + 294 pg/g dry weight at NSFI (Table 3, Figure 6). There were no reference
values for Al from Maine stations with which to compare our data, but comparisons could be made
to NS&T values. Analysis of the level of Al in mussel tissue within jurisdictions showed that the
level of Al was not consistent in any jurisdiction.

. High tissue concentrations of Fe and Al appears to be characteristic of NSFI, as similar results
were observed in 1993 and 1994. In 1993, the concentrations of Fe and Al were 1360 + 60 and
890 + 183 ug/g dry weight, respectively. In 1994, the concentrations of Fe and Al were 1033 +
79 and 688 + 31 ug/g dry weight, respectively. Higher concentrations of Fe and Al tend to be
consistent with elevated concentrations of suspended sediments at sites. This site is characterized
by high levels of turbidity (Sowles et al., 1996). High levels of sediment in the gut may also
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contribute to higher concentrations of other metals (Robinson et al., 1993).
Temporal Variation in Metal Concentrations

Benchmark sites

The repeated measures ANOVA comparing metal contaminant concentrations at each of the 5
sites [MASN, MECC, MEKN, NBHI (NBCH), and NSDI] showed that ‘year’ was significant
only for Hg and Zn (Table 6). ‘Site’ was significant for the following metals: Cr, Pb, Zn, Al, and
Fe. The concentration of Cr, Pb, and Zn was highest at MECC, and the concentration of Fe and
Al was highest at NSDI. The year effect observed in both Hg and Zn is the result of the decrease
in Hg and Zn concentration at all sites since 1993. In 1993 there were analytical problems that may
have contributed to higher Hg concentrations detected in that year. As such, the year effect for Hg
may be a reflection of improved analytical ability.

As aresult of the small sample size used in the test (n=>5 sites; n=5 years) a power analysis
was performed on the results of the ANOVA to determine how likely the test was to detect true
differences among populations. The power to detect site differences was generally > 0.70 which
means that there was <30% chance that a type II error occurred [i.e., not rejecting the H,, (no

significant differences among sites) when it is false] (Zar, 1984). As such, we are confident of the
results indicating site related differences. The only exceptions were Cu and Hg where the power
was 0.1, meaning that there was a 99% chance a Type II error occurred. Unlike the power to
detect site differences, the power to detect year differences was low, generally 0.2, meaning that
there was a >80% chance that a Type II error occurred. The only exceptions were Hg and Ni
where the chances that a Type II error occurred were 45 and 50%, respectively.

Annual sites (1994 vs 1997)

Figure 7 to 11 show the concentrations of all metals at the eighteen non-benchmark Gulfwatch
sites sampled in 1994 and 1997. Asterisks show sites in which a significant difference in
concentration was detected. Significant differences between years were observed for all
contaminants. The direction of the change varied depending on the contaminant and the site
examined. No change in metal tissue contaminant concentrations was observed at NHRH and
MEMR. Decreased metal tissue concentrations were observed in the following sites: MADX (Cr,
Cu, Fe, Hg, Ni, and Al), MAWN (Fe and PB), NHDP (Ag, Cd, Cr, Fe, Hg, Pb, and Zn), MEPH
(Hg); MEUR (Hg), and NBLB (Cd, Cu, Hg, Ni, Pb, and ZN) whereas the following sites had
increased metal tissue concentrations: MEPR (Al), MECK (Cd, Cr, Hg, Ni, Pb, and Zn), NSAR
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Figure 7. Distribution of silver and lead concentrations (arithmetic mean +/- SD, ug/g dry
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weight) in mussels at Gulf of Maine stations in 1994 and 1997. *, indicates a
significant difference between years (p<0.05).
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Figure 8. Distribution of chromium and zinc concentrations (arithmetic mean +/- SD,
ng/g dry weight) in mussels at Gulf of Maine stations in 1994 and 1997. *,
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Figure 9. Distribution of nickel and mercury concentrations (arithmetic mean +/- SD,
ug/g dry weight) in mussels at Gulf of Maine stations in 1994 and 1997. *,
indicates a significant difference between years (p<0.05).
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(Cu). At MABI, MAIP, MESA, NBNR and NSFI, the direction of change varied depending on

the metal examined.

Organic Contaminants

The total concentration of polynuclear aromatic hydrocarbons (XPAH,,), polychlorinated
biphenyls (XPCB,,) and organochlorine pesticides (ETPEST17) measured in mussel tissue

samples of indigenous mussels are presented in Table 7. Individual analyte concentrations of each
compound class are provided in Appendices B, C, and D.

Spatial Variation in Organic Concentrations

Figures 12 and 13 show the concentration of YPAH,, (Figure 12), YPCB,, (Figure 12), and
| 2TPEST,; (Figure 13) measured in tissue of M. edulis in the 1997 sampling stations, presented

from south to north. Concentrations of contaminants were plotted on a log scale and the geometric
mean * 1 SD has been added for comparison purposes. Concentrations above the geometric mean
+ 1 SD are considered high. Table 8 contains a summary of the geometric means for each
jurisdiction as well as an overall Gulf of Maine estimate. Geometric means of the 3PAH,,
concentrations range from non-detectable (12 ng/g) in New Brunswick, to 139 ng/g dry weight in
New Hampshire. At least one site in all jurisdictions exceed the geometric mean + 1 SD, with the
exception of New Brunswick (Figure 12). The geometric mean of 3PCB,, ranges from 1.1 in
Nova Scotia to 84.1 ng/g dry weight in Massachusetts. MASN, MADX, MABI, MAWN, MAIP,
NHDP, MECC, MESA, MEPH, MEPR, and MEKN all exceed the geometric mean + 1 SD
(Figure 12). The geometric mean of ZTPEST,; ranged from 3.1 ng/g dry weight in Nova Scotia
to 31.3 ng/g dry weight in Massachusetts. MASN, MADX, MABI, MAWN, MAIP, NHDP,
MECC, MEPH, MEPR, MEKN, MEUR, and MECK all exceed the geometric mean + 1 SD
(Figure 13). Nine sites examined in 1997 (MADX, MABI, MAWN, MAIP, NI-iDP, MECC,
MEPH, MEPR, and MEKN) exceed the geometric mean + 1 SD in each of ¥PAH,,, YPCB,, and
Y TPEST;,.

In 1997 as in previous years, there is a general southward trend toward higher organic

contaminant concentrations. This north-to-south increase in contaminant concentrations can be

attributed to increasing population density and industrialization. This trend is most evident in the
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Table 7. Tissue organic contaminant concentrations (arithmetic mean + SD, ng/g dry weight) from
mussels collected throughout the Gulf of Maine in 1997 and ANOVA of concentrations by
jurisdiction. Same letter indicates no significant difference among sites within each jurisdiction.
ND, nondetected.

LOCATION

MASN
MADX
MABI
MAWN
MAIP

NHRH
NHDP
MECC

MESA
MEPH
MEPR
MEKN
MEUR
MEMR
MECK

NBNR
NBCH
NBLB

NSAR
NSFI
NSDI
NSSC

YPAH,,

28f1A
123+ 178
260x11C
211+20C
110+ 118

69+9B
271414
147+19C

60+28 B
1375+324D
191 +33C
49+ 10B
135+25¢C
61+198B
ND A

ND A
ND A
ND A

ND A
ND A
198 £50B
NDA

2PCB24

42+7A
80t4B
188+ 1D
124t 15¢C
7158

12+1A
55+128B
37+88B

17+8CD
85+21E
213D
251D
098204
411068
6.7 £ 0.81 BC

20+0.38B
ND A
91+x19¢C

ND A
ND A
048 +095B
ND A

XTPEST;

2424
41+18B
39+2B
26+44A
20+24

12+2A
2044
15£5AB

11£2A
40+6C
19+3B
12+14A
14+x1A
11+14
19+2B

44+£0.88 A
48+0.19A
86+1.7B

1.3+£0.134A
42+042C
1.7 £ 0.46 AB
19+0.12B
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2OPEST};

57+x05A
58+x06A
11+108B
69+ 184
59+024

4.1£025A
4410524
461204

41158

76077 C
36t 1.1AB
32+0.18 A
7.8+0.59C
4910438
71+£070C

1.1£0.70 A
1404
24+08 A

ND A
ND A
ND B
NDB

2DDTg

19+1.6A
35¢1C
29+1.2¢C
20+£2.5AB
23+28B

79+2.1A
16 £48B
11£3AB

6.1 £0.90 A
33£5D
15+2¢C
9+0518B

59+14A

57+0.53A

11 £0.85 BC

33+0264A
332017 A
62+108B

1.3+0.13A
42+042C
1.7 £ 0.46AB
19+0.128B
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Figure 12. Log distribution of Z PAH,4 and £ PCB24 tissue concentrations (arithmetic mean:
ng/g dry weight) in mussels at Gulf of Maine stations, 1997.
Geometric mean (straight line) one standard deviation (das hed line) of all Gulf of
Maine Stations in 1997. ND= not detectable.
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Figure 13. Log distribution of total pesticide (ZPEST)7) tissue concentrations (arithmetic mean:
ng/g dry weight) in mussels at Gulf of Maine stations, 1997.
Geometric mean (straight line) one standard deviation (das hed line) of all Gulf of
Maine Stations in 1997. ND= not detectable.
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Table 8. Geometric mean (+SD) of tissue organic contaminants for mussels within each
jurisdiction and for all the Gulf of Maine, 1997 stations. ND, not detected.

Jurisdiction

Massachusetts
New Hampshire
Maine
New Brunswick
Nova Scotia

" Gulf of Maine

ZPAH24 ’

106 + 2.2
139+ 1.8
92 £5.8
ND
3.7+ 10.6

27.8 £11.3

YPCB,,

84.1 £ 1.58
30.2+193
12.5 £ 3.56
3.08 + 2.69
1.07 £ 1.31

12.331 5.46

38

STPEST,,

313+ 1.25
16:2 + 1.35
17.1 £ 1.53
6.64 + 1.35
3.09 + 1.40

12.27+ 2.38

YOPEST;,

7.41 £ 1.22

'5.26 £1.24

6.31 + 1.36
245+ 1.42
ND

396 £2.18

>DDT,

248 £1.29
11.8 £ 1.41
11.1 £1.8
5.13 £1.30
3.09 £140

038 +£224



2PCB,, and XTPEST,, (XDDTy) data sets (Figure 12 and 13), which probably reflects the

historical use and deposition of these contaminants in sediments.

Table 7 shows the organic contaminant concentrations. Sites were grouped by jurisdiction and
ANOVA and Tukey Kramer tests were employed to examine differences among sites within a
jurisdiction.

Polyaromatic Hydrocarbons
The concentration of YPAH,, in indigenous mussels ranged from ND at seven stations to

1375 £ 324 ng/g dry weight at MEPH (Table 7, Figure 12).
Some mean concentrations of YPAH,, were as high as those reported from areas influenced

by oil spills and municipal sewage outfall (148 ng/g in Rainio et al., 1986; 63-1060 ng/g in

Kveseth et al., 1982), but not as high as in industrialized areas affected by coking operations in

Sydney Harbor, NS (1400-16,000 ng/g, in Environment Canada, 1986) or smelting operations in
. Saudafijord, Norway {5111 - 225,163 ng/g; in Bjorseth et al., 1979).

The highest mean concentration of YPAH,, was measured at MEPH (1375 + 324 ng/g dry
weight), located in Portland Harbor. This value is high in comparison to other sites in the 1997
Gulfwatch program. In 1996, there was a significant oil spill near this station. Despite high tissue
concentration of YPAH,, at MEPH, the concentration is still lower than reported elsewhere in
Boston Harbor (Dorchester Bay, 1865 ng/g; Deer Island, 2226 ng/g, in NOAA, 1989) and in
Boston Harbor local areas (Hingham Bay, 744 ng/g in NOAA, 1989). High concentrations were
also observed at MABI (260 * 11 ng/g dry weight).

There were significant differences in ;PAH,, within all jurisdictions with the exception of
New Brunswick (Table 7). Massachusetts (MABI and MAWN), New Hampshire (MECC), Maine
(MEPH), and Nova Scotia (NSDI) all contained sites that were significantly higher than all other
sites.

Polychlorinated Biphenyls
Mean YPCB,, concentrations in indigenous mussels ranged from ND to 188 + 1 ng/g dry

weight at MABI (Table 7, Figure 12). Analysis of variance revealed that there were significant
differences in YPCB,, within all jurisdictions.

Pesticides
The concentration of YTPEST, in indigenous mussels ranged from 1.3 £ 0.13 at NSAR to
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41 £ 1 ng/g dry weight at MADX (Table 7, Figure 13). In 1997 as in previous reports (Sowles et
al., 1994, 1996; Chase et al., 1996a, b, 1997), ¥DDT¢ and its degenerative metabolites were the

main contributors to total detectable pesticides. XDDT, was the only contributor to ZTPESTl-, in

Nova Scotia (Table 7).
Analysis of each jurisdiction (Table 7) showed that there were significant differences in
>TPEST,; among sites in all jurisdictions.

Chlorobiphenyls and Polychlorinated Dibenzo Dioxins and Dibenzo Furans

Several non-ortho, mono-ortho and di-ortho PCB éongeners, pianar chlorobiphenyls (CBs),
are known to be biologically active and have structural and toxic properties similar to highly toxic
2,3,7,8-terachlorodibenzodioxin (2,3,7,8-TCDD). Mussel from several Gulfwatch sites were
analyzed for planar chlorobiphenyls (CBs) in 1997. Planar CB concentrations typically are found
in the environment at lower levels than other co-occurring PCB congeners. CBs concentrations in
mussels, therefore, were measured by GC-high resolution mass spectrometry. The analytical
results obtained are generally lower than the method detection limits established for the standard list
of Gulfwatch PCRB congeners shown in Appendix C using typical mussel watch methods of clean-
up/fractionation and analysis by GC-ECD.

Table 9 contains chlorobiphenyl (CB) concentrations of single composite mussels samples
collected from 12 Gulfwatch sites in 1997. The samples are a subset of the 1997 Gulfwatch
sampling sites and are representative of several major riverine outflow locations in the Gulf of
Maine. Concentrations of summed non-ortho, mono-ortho and di-ortho CBs in indigenous
mussels ranged from 4703 to 175 pg/g wet weight. The highest concentration was measured in
mussels at the Brewster Island site, MABI, (4703 pg/g wet wt) in Massachusetts which was
considered a reference site for that jurisdiction earlier in the Gulfwatch program. The lowest
concentrations were measured in mussels from two ref:rence sites in Nova Scotia, NSAR and
NSSC. Overall, Gulf-wide CB concentrations display a similar pattern of southerly increasing
contamination that has been observed for other Gulfwatch organic contaminants in this and in past
years.

* In addition to planar CBs, polychlorinated dibenzodioxins (PCDDs) and polychlorinated
dibenzofurans (PCDFs) were also measured in 1997 Gulf of Maine mussels. The results of these
analyses are given in Appendix E. PCDD and PCDF concentrations in mussels were low or and in
many cases below the limits of detection. In only one sample, MEPH (Portland Harbor ME), was
a detectable concentration (0.89 pg/g wet wt) of the highly toxic 2,3,7,8-TCDD measured. No
. other samples had concentrations about detection limits for any other dioxin congener chlorinated
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Table 9. Non-, mono- and di-ortho chlorobiphenyl concentrations
(pg/g wet wt) in mussels at1997 Gulf of Maine sites.

Congener MADX MAWN MAIP MABI NHDP NHRH MEPH MEPR MESA
Non-ortho

PCB-77 81 100 120 140 52 14 28 ND 12
PCB-126 11 13 ND 15 15 6 6 ND ND
PCB-169 ND ND ND ND 5 ND ND ND ND
Mono-ortho

PCB-105 530 740 520 1100 370 90 220 94 92
PCB-114 ‘ 17 31 28 44 8 ND 14 ND ND
PCB-118 1600 1900 1200 2000 1100 220 540 220 220
PCB-156 130 170 98 220 97 28 55 ND ND
PCB-189 ND 16 9 14 8 ND ND ND ND
Di-ortho

PCB-170 74 - 59 ND ND 32 15 16 12 ND
PCB-180 350 360 230 270 16 95 69 56
Total 2793 3376 2205 4703 1703 373 974 395 380
pg/g wet wt '

Congener NBNR NBLB NSAR NSSC

Non-ortho

PCB-77 . 18 15 ND 9

PCB-126 ND ND ND ND

PCB-169 ND ND ND ND

Mono-ortho

PCB-105 67 110 ND 35

PCB-114 ND ND ND ND

~PCB-118 170 280 58 100

PCB-156 17 ND 7 ND

PCB-189 ND ND ND ND

Di-ortho

PCB-170 18 ND 15 7

PCB-180 77 180 44 24

Total 367 585 124 175

M wet wt
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in the 2,3,7,8 positions with the exception of the less toxic 1,2,3,4,6,7,8 hepta- and octachloro
congeners. On the other hand low concentrations of 2,3,7,8-terachlorodibenzo(p) furan
(2,3,7,8-TCDF) and other chlorinated TCDF congeners were detected in many samples.
Predominance of PCDF concentrations particularly 2,3,7,8-TCDF relative to TCDD congener
concentrations can be indicative of pulp mill sources (Rappe at el 1988) and/or of PCB
contamination (Hutzinger et al 1974),

Since planar CBs, dioxins and furans share a similar mode of action, and their relative
toxicities can be standardized through the use of toxic equivalency factors (TEF), toxic equivalency
concentration (TEQs) can be calculated for CBs and for PCDDs/PCDFs in Gulfwatch samples.
TEQs for the CB concentrations given in Table 9 are shown in Table 10. TEQs were calculated
using CB concentrations (Table 9) and the WHO interim toxic equivalency factors compiled by
Alborg (Alborg at al. 1994). CB-derived TEQs in mussels from the 1997 sites ranged from a high
of 2.11 pg/g at Brewster Island, Massachusetts to a low of 0.01 pg/g at Argyle, Nova Scotia. A
- graphical representation of the CB-derived TEQ distribution in samples collected from GOM sites
in 1997 is shown in Figure 14. The spatial distribution of 1997 Gulfwatch mussel PCDD/PCDF
derived TEQs is also presented in Figure 14. PCDD/PCDF derived TEQs were calculated using
PCDD/PCDEF concentrations (Appendix E) and established international toxic equivalency factors
(NATO 1988). PCDD/PCDF derived TEQs range from a high of 1.04 pg/g at Portland Harbor,
Maine to a low of 0.019 pg/g at Spechts Cove, Nova Scotia.

Total TEQs for both CBs and PCDD/PCDF are also shown in Figure 14. The range of total
TEQs is 2.45 pg/g at Brewster Island MA to 0.04 pg/g at Spechts Cove NS. Interestingly, the
greater contribution to total TEQs in most Massachusetts and New Hampshire sites is due to planar
CBs in mussels, while the greater contribution to total TEQs in samples from Maine and New
Brunswick is due to PCDDs/PCDFs.

'From a human health perspective, total toxic equivalency concentrations for 1997 Gulfwatch
samples are well below the 20 pg/g 2,3,7,8-TCDD Canadian tolerance level for the consumption of
seafood that is’considered protective of human health (Health Canada, 1993). The highest total
TEQ measured in 1997 mussel was 2.45 pg/g, Brewster Island, MA. A tissue reference
concentration of 0.32 pg TEQ/g diet that is considered protective of sensitive mammalian and
avian species is currently under development (Environment Canada April 1988) . In 1997, Guif of
Maine mussels at MABI, MABI, MAWN, NHDP, NHRH, MEPH, MEPR, NBNR, and NBLB
exceed this reference concentration.
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Table 10. Non-, mono- and di-ortho chlorobiphenyl TEQs in mussels
at 1997 Gulf of Maine sites.

* Toxic Equivalency Factors (Ahlorg et al 1994)
43

Congener TEF* MADX MAWN MAIP MABI NHDP NHRH MEPH MEPR
Non-ortho

PCB-77 0.0005 0.041 0.050 0.060 0.070 0.026 0.007 0.014
PCB-126 0.1 1.100 = 1.300 1.500 1500 0.600 0.600
PCB-169 0.01 0.050

Mono-ortho

PCB-105 0.0001 0.053 0.074 0052 0.110 0.037 0.009 0.022 0.009
PCB-114 _ 0.0005 0.009 0.016 0014 0.022 0.004 0.007
PCB-118 0.0001 0.160 0.190 0.120 0290 0.110 0.022 0.054 0.022
PCB-156 0.0005 0.065 0.085 0.049 0.110 0.049 0.014 0.028
PCB-189 0.0001 0.002 0.001 0.001 0.001

Di-ortho

PCB-170 0.0001- 0.007 0.006 0.003 0.002 0.002 0.001
PCB-180 0.00001 0.004 0.004 0.002 0.003 '0.001 0.001
Total ) 1.44 1.73 030 2.11 1.78 0.65 0.73 0.03
(pg/g wet wi)

Congener TEF* MESA NBNR NBLB NSAR NSSC

Non-ortho

PCB-77 0.0005 0.006 0.009 0.008 0.005

PCB-126 . 0.1

PCB-169 0.01

Mono-ortho

PCB-105 0.0001 0.009 0.007 0.011 0.004

PCB-114 0.0005 '

PCB-118 0.0001 0.022 0.017 0.028 0.006 0.010

PCB-156 0.0005 0.009 0.004

PCB-189 0.0001

Di-ortho

' PCB-170 0.0001 0.002 0.002 0.001

PCB-lSO 0.00001 0.001 0.001 0.002 0.000 0.000

Total 0.04 0.04 0.05 0.01 0.02

{pg/g wet wt)
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Temporal Variation in Organic Concentrations

Benchmark sites
- The repeated measures ANOVA comparing organic contaminant concentrations at each of the 5
benchmark sites [MASN, MECC, MEKN, NBHI (NBCH), and NSDI] showed that ‘year’ was
significant only for XPAH,, (Table 11). The year effect for YPAH,, appears to be the result of

increased concentrations of YPAH,, at all sites. ‘Site’ was significant for all organic
contaminants. The concentration of XPAH,, and XPCB,, was higher at MECC, whereas the
concentration of YTPEST 7 was highest at MASN. '

As a result of the small sample size used in the test (n=5 sites; n=5 years) a power analysis
was performed on the results of the ANOVA to determine how likely the test was to detect true
differences among populations. The power to detect site differences was generally >0.90, which
means that there was <10% chance that a type II error occurred [i.e., not rejecting the H, (no

significant differences among sites) when it is false] (Zar, 1984). As such, we are confident of the
results indicating site-related differences. Unlike the power to detect site differences, the power to

detect year differences was low, generally 0.3, meaning that there was a >70% chance that a Type

II error occurred. The only exception was YPAH,,, where the chance that a Type II error

occurred was only 22%. Concentrations of YPAH,, appear to be showing a pattern of increased

concentrations since 1993.

Annual sites (1994 vs 1997)

Figure 15 to 17 show the concentrations of all organic contaminants at the eighteen non-
benchmark Gulfwatch sites sampled in 1994 and 1997. Asterisks show sites in which a significant
difference in concentration was detected. Significant differences between years were observed for
all contaminants. The majority of differences reveal significantly higher concentrations than
observed in 1993. With the exception of NSAR, all sites had at least one organic contaminant
tissue concentration that was significantly higher in 1997 that in 1994.

Temporal comparison of MEPH and NHDP are of particular interest and relevance. Since the
sampling in 1994, oil spills have occurred near both Gulfwatch stations. Temporal analysis of
total organic contaminant concentrations at NHDP revealed that the concentrations of YPAH,,

were significantly higher in 1997. The oil spill into the Piscataqua River near NHDP happened on
July 1, 1996, and elevated levels of YPAH,, may be a reflection of this event. Analysis of the

effects of the oil spill that occurred into the Piscataqua River near NHDP has been examined in
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more detail'in a previous report (Chase et al., 1997) and in the following section “Effects of an Oil
Spill in the Great Bay Estuary” in this report. Temporal analysis of total organic/>PAH,,

contaminant concentrations at MEPH, however, revealed no significant difference between 1994
and 1997 samples.

Effects of an Qil Spill in the Great Bay Estuary

On July 1, 1996, there was an oil spill from the vessel Provence into the Piscataqua River.
Approximately 1,000 gallons of #6 fuel oil was dispersed with water currents into nearby areas of
the Great Bay Estuary. Fuel oils are known to contain a variety of PAHS, especially 2 to 4-ring
PAHs, although hundreds of organic compounds, including larger PAHs, are present in all crude
oils (Kennish, 1996). The Gulfwatch station NHDP at Dover Point, located at the confluence of
the Piscataqua River and Little Bay approximately 2.5 miles upstream of the oil spill site, was

- sampled previously in 1994 and was to be sampled again in 1997. However, samples were also
collected in response to the oil spill in July and October, 1996, to determine if contaminants from
the spill were taken up by mussels, and the degree of elimination of the contaminants after three
months. The 1994 data serves as useful background information for assessing the degree of
exposure of the 1996 and 1997 mussel tissue samples to the oil spill contaminants.

The PAH found in mussel tissue samples collected in 1994, on July 16 (16d) and October 1 (3
mo.) of 1996, and in 1997 are illustrated in Figure 18 and summarized in Table 12.

The PAH found in mussel tissue samples collected in 1994, on July 16 (16d) and October 1 (3
mo.) of 1996 and in 1997 differed in individual and total PAH concentrations, patterns of PAHs
and types of PAHs present. There were 13 different PAHs detected in the 16d samples, 11 in the
3 mo. And 1997 samples, and 7 in the 1994 samples. Two low molecular weight (MW) alkylated
PAHs detected in the 16d samples were not detected in the 3 mo. and the 1994 samples, while the
four PAHs with the highest MWs detected in 16d and 3 ' mo. and 1997 samples were not detected
in the 1994 samples. However, the four higher MW PAHs found in 16d and 3 mo. Samples were
still detected in 1997. These patterns suggest that lower MW PAHs and alkylated naphthalenes
were less available for uptake after the spill, or that they are eliminated from mussels more readily
than the larger PAHs. The patterns also suggest that the higher MW PAHs from the spilled oil are
more persistent. Weathering of PAHs in other oil spills have shown decreases in naphthalenes and
greater stability of larger PAHs relative to other PAHs (Boehm et al., 1997; Brown et al., 1997).
Elimination rates are slower for higher MW PAHs in mussels (Livingstone and Pipe, 1992).

All 13 PAHs detected in the 16d samples were present at higher concentrations than in all of
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Table 12. Tissue concentrations (ng/g DW) of polyaromatic hydrocarbons in

Mpytilus edulis at sites in the Great Bay Estuary of Maine and New Hampshire in 1994
(NHDP-1994) and 16 days (NHDP-16d), 3 months (NHDP-3 mo.) and 15 months
(NHDP-15mo.) after an oil spill.

PAH NHDP-1994 NHDP-16d NHDP-3mo. NHDP-15 mo.
Naphthalene <30 <30 <30 <8.2
2-Me naphthalene <30 <30 <30 <9
1-Me-naphthalene <30 <30 <30 <89
Biphenyl <20 <20 <20 <6.1
2,6 diMe naphthalene <20 <20 <20 " <88
acenaphthylene - <10 <10 <10 <59
acenaphthene <10 <10 <10 <6.4
2,3,5-trime naphthalene <20 24 <20 <9.8
fluorene <10 <10 <10 <5.1
phenanthrene 14 21 13 15
anthracene <10 <10 <10 <5.1
1-me phenanthrene <10 32 <10 <8
fluoranthene 36 74 34 42
pyrene 38 98 41 47
benzo(a)anthracene ’ 12 52 22 18
chrysene 25 88 32 30
benzo(b+k)fluoranthene 43 113 64 52
benzo(e)pyrene 24 60 35 32
benzo(a)pyrene <10 25 14 10
perylene <10 21 16 12
indeno(123cd)pyrene <10 17 14 8
dibenzo(ah)anthracene <10 <10 <10 <3.6
benzo(ghi)perylene <10 16 15 12
TOTAL 187 639 298 266
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the other samples, while only phenanthrene and fluoranthene concentrations in the 1994 samples
were greater than in the 3 mo. Samples, but were less than in the 1997 samples. Concentrations of
phenanthrene, fluoranthene and pyrene were slightly higher in 1997 compared to 1996-3 mo.
Samples, while concentrations of all eight of the higher MW PAH:s detected in the two samples
were present at lower concentrations in the 1997 tissue. The average >PAH,, concentrations were

639, 298, 266 and 187 ng/g DW for the 16d, 3 mo., 1997 and 1994 samples, respectively. Thus,
the total PAH concentration has decreased slightly from 1996 to 1997, but the same number of
PAHs are still detectable, including the four higher MW PAHs that were not present before the oil
spill. However, even those are present at relatively low concentrations close to detection limits.

Acceptable Levels and Standards of Mussel Contamination

Limited information is available on observed human health effects of consumption of chemically-
contaminated shellfish. . While there may be limited epidemiological documented effects, laboratory
assays and isolated occurrences of acute human poisonings are responsible for the focus of
attention on human health impacts from eating chemically contaminated marine fish and shellfish.
Published tolerance or action levels for PAHs in commercial marine species are not available in
Canada or in the United States. In marine areas where PAH contamination may be a human health
concern, closure of commercial fisheries as a result of high contamination levels has been dealt
with on a case by case basis. In general, most concentrations reported in the literature are on a wet
weight basis in contrast to Gulfwatch dry weight values. To facilitate general comparisons with
Gulfwatch values, an average moisture content of 85% has been applied to wet weight health
values to derive dry weight equivalents. All reported organic concentrations are within acceptable
concentrations for those compounds that have established FDA Action Limits in fish and shellfish.
PCB concentrations found in Gulfwatch mussels (Appendix C) are less than the action level of 13
ppm dry weight or 2 ppm wet weight (USFDA, 1990; CSSP, 1992). MABI had the highest
concentrations of PCBs in mussels, 0.19 + 0.01 ppm dry weight, during the 1997 survey. The
action level for the pesticides dieldrin, aldrin, chlordane, heptachlor, and heptachlor epoxide is 2.0
ppm dry weight, or 0.3 ppm wet weight (USFDA, 1990). All of these pesticides were below
detection concentrations in the 1997 mussel survey. The total DDT concentrations found are
several orders-of-magnitude below the action level of 33 ppm dry weight or 5 ppm wet weight
(USFDA,1990; CSSP, 1992). Duxbury, MA had the highest level, 0.04 £+ 0.01 ppm dry weight,
in 1997. Canadian limits for agricultural chemicals exclusive of DDT are 0.67 ppm dry weight or
0.1 ppm wet weight.
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Admissible levels of methyl mercury, expressed as mercury, are less than 6.7 ppm dry weight,
or 1 ppm wet weight in the United States (USFDA, 1990), and less than 3.3 ppm dry weight, or
0.5 ppm wet weight in Canada (CSSP, 1992). The highest concentration of mercury found in the
1997 Gulfwatch Project was 0.70 = 0.07 ppm dry weight, at Dover Point, New Hampshire,
which is well below both federal action concentrations.

A series of FDA “Guidance Documents” (USFDA, 1993) for cadmium, chromium, lead and
nickel has been released in the United States to complement the FDA Mercury Action Level. These
“alert” levels, however, are guidelines and by themselves do not warrant the issuance of health
advisories. In Table 13, guidance concentrations are reported on both wet weight and dry weight
bases and are compared to the highest observed concentration in any single replicate analyzed in the
1997 Gulfwatch Project. No metal approaches the guideline values.

Table 13. A comparison of United States Food and Drug Administration guidelines for various
metals with the Gulfwatch results.

Metal Guideline Guideline Highest Observed Location
(Wet weight) (dry weight) 1997 Guifwatch value
(dry weight)
Cadmium 3.7 ugl/eg 25 ug/g 2.7 uglg Apple River, NS
Chromium 13 pug/g 87 uglg 3.0 uglg Clark Cove, ME/NH
Lead - 1.7 pg/g 11.5 ugl/g 6.4 ug/g Portland Harbor, ME
Nickel 80 ug/g 533 ug/g 2.2 pglg Apple River, NS

The U.S. EPA has promulgated a series of “screening values” for three metals (Cd, Hg,
Se), 11 organochlorine compounds, one chlorophenoxy herbicide, total PCBs and
dioxins/dibenzofurans (EPA, 1993) which were derived using human health risk assessment
procedures. The promulgated values are based on several exposure assumptions (70 kg man, an
average consumpﬁon rate of 6.5 g/day), and either the most current Reference Dose (RfD) values
for non-carcinogens or the most recent Slope Factor (SF) plus an acceptable lifetime cancer risk of

1 x 105 for the carcinogenic compounds listed. Exceedances of any of the screening values is
meant to trigger a more in-depth assessment of actual human health risk. Applying these screening
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values to the Gulfwatch data provides yet another index of possible human health concern.
Mean concentrations of Cd, Hg and ZDDT6 at all 1997 Gulfwatch stations are well below

the EPA Screening Values (EPA, 1993). The Screening Value for the YPCB,, is notably low
(0.01 pg/g wet weight or approximately 0.07 pg/g dry weight; EPA, 1993). Mean YPCB,,

concentrations at five Gulfwatch sites (MADX, MABI, MAWN, MAIP, and MEPH) exceed this
value. These stations should therefore be examined in much more detail to adequately assess
potential human health risk to PCBs and determine potential sources of contaminants. In the past
there has generally been two or fewer Gulfwatch sites that have exceeded this screening value.
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Morphometric Comparison

Table 14 contains a summary of the morphological measurements [length (mm), height
(mm), width (mm), wet weight (g) and condition index (CI)] for indigenous mussels collected at
each site.

Shell Morphology

The field protocol recommended the collection of mussels within the length range of 50 -
60 mm. The Gulfwide mean shell length (£SD) at the 22 sites was 54.1 + 3.4 mm (Table 14,
Figure 19). For the majority of sites, the mean length of mussels collected fell within the range of
50 - 60 mm. ANOVA on the length of mussels collected among sites was significant (p<0.05)
suggesting that there were significant differences in length. This significant difference is a
reflection of the size range available at the sites at the time of sampling. In this report, as in
previous reports (Sowles et al., 1996; Chase et al., 1996a, b, 1997) the shell length has been
significantly lower at the New Brunswick stations.

Condition Index and Weight

Condition indices (CI) of mussels collected in 1997 are shown in Table 14 and Figure 20.
The average CI (£SD) for all sites throughout the Gulf of Maine was 0.204 + 0.066. ANOVA on
the mean CI of all mussels was significant (p<0.05). The CI ranged from a value of 0.109 * 0.035
at NSAR, t0 0.304 £ 0.059 at NBCH. The ClIs of all sites in Nova Scotia and New Hampshire
were below the Gulf-wide mean. The CI varied in all jurisdictions except New Hampshire.

The average wet weight (g) of mussels collected in 1997 are shown in Table 14 and Figure
21. Comparison of the distribution of CI (Figure 20) and wet weight (Figure 21) reveals a similar
pattern of variation. As such an analysis of covariance (ANCOVA) on wet weight, using length,
height, and width as covariates, was performed among sites within each jurisdiction to determine
the cause of the differences in CI. ANCOVA revealed that for all jurisdictions with the exception
of Maine, length, width, and height were all significant covariates. Length and width were the
only significant covariates in Maine. As a result, the wet weight among sites within each
jurisdiction was adjusted for the covariates and then analyzed by ANOVA and Tukey Kramer test.
Figu're 21 and Table 14 show the adjusted mean weights for stations sampled in 1996. There was
a significant relationship between adjusted wet weight and the CI at a given site (p<0.001).
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Figure 19. Mean length (+/- SD) of mussels collected at the Gulf of Maine stations in 1997.
Stations are organized clockwise from south to north. Mean length of mussels is
indicated by the straight line.
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15

CONDITION INDEX (CI)

Figure 20. Mean condition indicies (+/- SD) of mussels collected at the Gulf of Maine
stations in 1997. Stations are organized clockwise from south to north. Mean
condition index of mussels 1s indicated by the straight line.
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Figure 21. Mean weight (+/- SD) of mussels collected at the Gulf of Maine stations in 1997.
Stations are organized clockwise from south to north. Mean weight of mussels is
indicated by the straight line.
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CONCLUSIONS

The field season of 1997 represented the seventh Gulfwatch field season overall and the
second year of the second three year rotation of the long-term plan in the Gulfwatch program. As
part of the three year plan, the monitoring of indigenous mussels was carried out at prescribed sites
that were previously sampled during 1994, in addition to benchmark sites that are sampled every
year. Samples were obtained from all sites, with the exception of Barrington Passage, Nova
Scotia. No mussels were found at that site in 1997. ,

Some trends in contaminant concentrations are beginning to emerge, especially for the
benchmark sites. With five years of data, our ability to predict ‘year’ effects is increasing.
However, it is still low. Examination of metal contaminants revealed two ‘year’ effects, for
mercury and zinc. Analysis suggests that the concentrations of both metals have decreased in the
benchmark stations. ‘Year’ was not significant for the remainder of the metals examined. This
may be a reflection of the power to detect year differences. It appears, however, that the metals
(except mercury and zinc) vary depending on the year examined. It is likely that what is being
observed is natural variation in the baseline concentrations of these contaminants. Documentation
of baseline concentration is very important and this will strengthen the importance of the Gulfwatch
database. Knowledge of baseline contaminant concentrations will enable researchers and managers
to provide more accurate information in environmental assessment procedures.

The concentrations of organic contaminants appear to be increasing. Although a ‘year’
effect was only observed for YPAH,,, examination of the other benchmark sites seems to indicate

that organic contaminants may be higher in 1996 and 1997, in comparison to 1993-1995.
Comparison of the tissue contaminant concentrations of all sites in 1997 in comparison to samples
taken in 1994 revealed increased levels in the majority of cases where differences between the
years was observed. Perhaps this should be cause for concemn. In the past 2 years at least two
known oil spills have occurred in the Gulf of Maine near Gulfwatch sites. It would be worthwhile
to examine other possible sources of organic contaminants at other sites.

The use of the Gulfwatch program to provide information in response to an oil spill was
also a new activity for the program during the last two years. The findings for the oil spill in the
Great Bay Estuary can serve as a small study that can help resource managers in both Maine and
New Hampshire to understand the impacts and fate of that specific case of spilled oil. Having
stratégically located sampling sites in so many areas Gulfwide provides a baseline data base for
comparison of findings of studies conducted after such events as oil spills. The continued
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sampling in ensuing years will provide more long-term insight into the effects of the spill. In
addition, the Hew Hampshire Department of Environmental Services has recently adopted and
expanded Gulfwatch for use around the whole coast of the State. Their focus is to establish a
strong baseline database for use with future oil spills and to help identify existing sources of
chronic oil spills and other contaminants.

Coastal monitoring programs like Gulfwatch provide a valuable measure of the current state
of the coastal environment that is useful for identifying future problems which may be prevented
by early action, for determining trends in contamination over space and time, and for identifying
potential sources of contamination. Gulfwatch results provide a geographically comprehensive,
region-specific perspective on relative contaminant concentrations in both contaminated and pristine
areas. As such, it is an unique and invaluable basis for making management decisions on issues
relating to toxic contaminants. It is anticipated that continuation of the Gulfwatch program
according to the ten year plan will provide the temporal perspective necessary to determine trends

and impacts of remediation efforts.
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APPENDIX A. Tissue concentrations of heavy metals in Mytilus edulis in the Gulf of Maine, 1997,

(ug/g dry wt: mean and standard deviation (SD))

STATION; Pb Zn Ag Cd Cr Cu Fe H Ni Al % SOLID
MASSACHUSSETTS

MASN1 2.8 70 0.65 1.0 1.0 6.6 250 0.23 0.9 110 15.2
MASN2 2.8 75 0.88 1.0 0.9 712 250 0.27 1.0 91 16.5
MASN3 35 82 1.20 1.3 1.1 7.5 280 0.38 1.0 100 15.3
MASN4 3.3 84 1.30 1.1 1.0 74 280 0.27 1.0 120 16.7
Mean 3.1 78 1.01 1.1 1.0 7.2 265 0.29 1.0 105 15.9
SD 04 6 0.30 0.2 0.1 0.4 17 0.06 0.1 13 0.8
MADX1 3.2 88 0.20 1.0 1.1 6.4 180 0.44 0.7 86 17.6
MADX?2 2.6 59 0.16 1.0 1.0 6.2 190 0.52 0.6 75 17.0
MADX3 3.7 85 0.22 1.2 1.3 7.5 250 0.50 0.7 110 16.9
MADX4 3.2 8 |- 024 0.9 1.1 7.5 204 0.46 0.7 90 18.5
Mean 3.2 79 0.21 1.0 1.1 6.9 206 0.48 0.7 90 17.5
SD 0.5 14 0.03 0.1 0.1 0.7 31 0.04 0.0 15 0.7
MABII 4.6 140 0.25 1.5 1.8 7.5 420 0.58 1.7 290 16.2
MABI2 2.6 140 0.32 1.5 1.4 6.7 180 0.53 0.9 88 14.9
Mean 3.6 140 0.29 1.5 1.6 7.1 300 0.56 13 189 15.6
SD 1.4 0 0.05 0.0 0.3 0.6 170 0.04 0.6 143 0.9
MAWNI 4.1 110 0.18 1.5 2.2 6.6 410 0.51 1.4 280 13.4
MAWN2 5.2 110 0.17 1.8 2.9 7.5 550 0.59 1.9 320 12.0
MAWN3 39. 94 0.23 14 2.2 6.5 430 0.50 14 280 14.0
MAWN4 57 140 0.30 2.0 3.0 8.8 600 0.60 1.8 320 15.1
Mean 4.7 114 0.22 1.7 2.6 74 498 0.55 1.6 300 13.6
SD 0.9 19 0.06 0.3 0.4 1.1 92 0.05 0.3 23 13
MATIP1 2.3 82 0.13 1.7 1.7 6.3 300 0.48 0.9 130 13.5
MAIP2 24 88 0.14 1.5 1.6 6.4 320 0.48 0.8 150 14.9
MAIP3 2.1 90 0.16 1.4 1.5 6.2 270 0.47 0.7 110 15.0
MAIP4 1.9 74 0.14 1.4 1.5 6.0 279 0.47 0.8 127 15.0
Mean 2.2 ‘84 0.14 1.5 1.6 6.2 292 0.48 0.8 129 14.6
SD 0.2 7 0.01 0.1 0.1 0.2 22 0.01 0.1 16 0.7
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APPENDIX A. Tissue concentrations of heavy metals in Mytilus edulis in the Gulf of Maine, 1997.
(ug/g dry wt: mean and standard deviation (SD))
STATION| Pb Zn Ag | cd Cr Cu Fe Hg | Ni Al | % SOLID
NEW HAMPSHIRE
NHRH! 3.1 140 0.00 1.9 1.9 7.7 400 0.71 1.9 200 10.0
NHRH?2 2.1 110 0.10 1.4 1.6 6.5 330 0.75 1.6 210 1.7
NHRH3 1.3 66 0.00 1.0 0.9 38 170 0.40 0.9 91 18.8
NHRH4 2.8 150 0.10 1.8 3.8 9.8 350 0.71 2.6 220 10.4
Mean 2.3 117 0.08 1.5 2.0 7.0 313 0.64 1.7 180 12.7
SD 0.8 38 0.03 0.4 1.3 2.5 99 0.16 0.7 60 4.1
NHDP1 1.8 100 0.00 1.9 2.4 7.2 330 0.71 15 240 12.3
NHDP2 1.7 130 0.00 1.7 3.0 6.2 280 0.66 1.3 180 12.0
NHDP3 1.3 100 0.00 1.7 2.3 6.6 340 0.78 1.3 260 12.7
NHDP4 2.0 106 |- 0.09 1.8 23 6.8 353 0.63 1.4 251 12.3
Mean 1.7 109 0.00 1.8 2.5 6.7 326 0.70 1.4 233 12.3
SD 0.3 14 0.00 0.1 0.3 0.4 32 0.07 0.1 | 36 0.3
MECC]1 3.8 90 0.00 1.1 2.6 5.6 500 0.61 1.5 380 13.1
MECC2 6.2 140 0.00 1.8 32 7.7 660 0.65 2.0 460 12.0
MECC3 4.6 140 0.00 1.6 2.9 6.5 540 0.63 1.9 380 12.5
MECC4 5.7 127 0.09 1.7 3.3 8.2 744 0.75 2.1 493 11.8
Mean 5.1 124 0.00 1.5 3.0 7.0 611 0.66 1.9 428 12.4
SD 1.1 24 0.00 0.3 0.3 1.2 112 0.06 0.3 57 0.6
MAINE
MESAI 2.8 96 ND 1.4 1.8 6.6 330 0.44 1.0 150 11.9
MESA2 3.2 99 ND 1.7 2.0 6.0 350 0.53 1.1 170 11.1
MESA3 34 110 ND 1.8 2.1 6.3 350 0.52 1.3 160 9.8
MESA4 3.1 100 ND 1.6 2.1 6.4 400 0.57 1.2 210 11.1
Mean 3.1 101 ND 1.6 2.0 6.3 350 0.52 1.1 173 11.0
SD 0.3 60 0.2 0.1 0.3 30 0.05 0.1 26 0.9
MEPH]1 8.1 130 0.13 1.7 2.1 7.4 550 0.62 1.4 340 7.1
MEPH2 7.8 140 ND 1.8 2.0 7.8 550 0.50 1.7 410 8.3
MEPH3 4.9 89 ND 1.2 1.1 3.7 330 0.56 0.9 230 9.3
MEPH4 47 103 ND 1.2 1.3 4.8 323 0.53 1.0 240 8.2
Mean | 64 116 ND 1.5 1.6 5.9 438 | 055 1.2 305 8.2
SD 1.8 24 0.3 0.5 2.0 129 0.05 0.4 86 0.9




APPENDIX A. Tissue concentrations of heavy metals in Mytilus edulis in the Gulf of Maine, 1997.
(ug/g dry wt: mean and standard deviation (SD))
STATION| Pb Zn Ag Cd Cr Cu Fe Hg Ni Al % SOLID|
MAINE
MEPR2 4.5 67 0.10 1.5 2.0 5.7 510 0.27 1.5 410 9.1
MEPR3 3.9 75 ND 1.1 1.7 5.3 440 0.43 1.2 370 9.6
MEPR4 34 56 ND 0.9 1.7 4.5 430 0.25 1.2 380 9.5
Mean 4.2 69 0.08 1.2 2.0 5.8 513 0.41 1.3 415 9.1
SD 0.7 10 0.03 0.3 0.3 1.3 111 0.20 0.2 59 0.7
MEKN]1 1.4 56 0.10 1.5 1.5 6.6 330 0.52 1.1 210 10.7
MEKN?2 0.7 49 ND 1.2 0.9 47 160 0.23 ND 100 12.6
MEKN3 1.0 44 ND 1.3 0.9 4.9 150 0.24 ND 96 11.7
MEKN4 0.8 33 - ND 1.3 0.8 3.7 120 0.32 ND 82 10.6
Mean 1.0 46 ND 1.3 1.0 5.0 190 0.33 ND 122 114
SD 0.3 10 0.1 0.3 1.2 95 0.14 59 0.9
MEURI1 0.6 32 0.10 1.0 0.8 3.1 200 0.26 0.6 67 10.8
MEUR?2 2.3 78 0.29 2.3 1.8 7.1 540 0.36 1.5 200 6.8
MEUR3 0.9 44 0.20 1.5 1.0 4.6 250 0.40 1.1 100 8.5
MEUR4 0.8 34 0.11 1.3 1.0 44 206 0.37 0.7 75 8.3
Mean 1.2 47 0.17 1.5 1.1 4.8 299 0.35 1.0 110 8.6
SD 0.8 21 0.09 0.6 0.5 1.7 162 0.06 0.4 61 1.7
MEMRI1 09 . 38 ND 1.0 1.0 35 360 0.36 1.0 230 10.7
MEMR2 1.0 24 ND 0.9 0.8 2.6 240 ND 0.9 180 8.5
MEMR3 2.2 75 ND 2.0 2.0 7.1 870 0.52 2.4 640 9.7
MEMR4 1.1 33 ND 1.1 1.0 3.0 350 0.41 1.2 218 9.6
Mean 1.3 42 ND 1.3 1.2 4.1 455 0.35 1.4 317 9.6
SD 0.6 23 0.5 0.5 2.1 282 0.17 0.7 216 0.9
MECK1 1.6 95 0.11 1.8 1.6 6.3 430 0.44 1.3 320 7.6
MECK?2 2.1 140 ND 2.2 1.3 6.3 480 0.54 1.6 380 6.8
MECK3 2.4 160 ND 2.2 1.1 6.8 330 0.36 14 260 8.7
MECK4 1.7 99 ND 1.9 1.3 4.7 310 0.46 1.2 240 8.1
Mean 2.0 124 ND 2.0 1.3 6.0 388 0.45 1.4 300 7.8
SD 0.4 32 0.2 0.2 0.9 81 0.07 0.2 63 0.8




APPENDIX A. Tissue concentrations of heavy metals in Myrilus edulis in the Gulf of Maine, 1997.

(ug/g dry wt: mean and standard deviation (SD)

STATION| Pb Zn Ag Cd Cr Cu Fe Hg Ni Al % SOLID
NEW BRUNSWICK
NBNRI1 0.8 79 ND 0.8 1.1 15.0 530 0.22 1.1 450 11.8
NBNR?2 1.1 60 ND 0.7 1.0 4.1 380 0.21 0.8 350 13.2
NBNR3 0.8 61 ND 0.7 1.0 47 350 0.17 0.8 410 13.1
NBNR4 0.9 65 0.10 0.7 1.0 4.1 470 0.26 1.1 400 12.3
Mean 0.9 66 ND 0.7 1.0 7.0 458 0.22 1.0 403 12.6
SD 0.1 9 0.1 0.1 5.4 62 0.04 0.2 41 0.7
NBCHI 0.5 64 0.10 1.1 0.6 5.7 170 0.20 0.7 130 18.1
NBCH2 0.3 58 ND 1.2 0.7 5.5 205 0.11 0.6 170 18.4
NBCH3 0.6 58 0.11 1.2 0.7 5.2 270 0.20 04 210 17.2
NBCH4 0.5 54 |- ND 1.2 0.7 5.0 260 0.14 04 210 18.6
Mean 0.5 58 0.08 1.2 0.7 5.3 226 0.16 0.5 180 18.1
SD 0.1 42 0.03 0.0 0.1 0.3 47 0.05 0.1 38 0.6
NBLB1 1.2 77 ND 1.0 1.1 6.6 360 0.16 0.8 270 13.3
NBLB2 1.3 68 ND 1.0 1.0 7.4 350 ND 0.9 280 11.9
NBLB3 1.4 69 ND 1.2 1.1 8.0 350 0.14 0.9 270 12.9
NBLB4 1.4 63 | ND 1.2 1.1 7.2 380 0.32 0.9 275 13.1
Mean 1.3 69 ND 1.1 1.1 7.3 360 0.17 0.9 274 12.8
SD 0.1 6 0.1 0.0 0.6 14 0.10 0.0 5 0.6
NOVA SCOTIA

NSARI 1.8 84 ND 2.8 2.2 6.7 850 0.60 2.3 700 15.5
NSAR2 1.8 82 ND 3.1 24 7.6 940 041 2.5 820 13.8
NSAR3 1.2 66 ND 25 1.5 6.2 570 0.44 2.0 500 14.8
NSAR4 1.1 62 ND 24 1.4 6.0 520 0.46 2.1 400 13.8
Mean 1.5 74 ND 27 1.9 6.6 720 0.48 2.2 615 14.5
SD 04 11 0.3 0.5 0.7 206 0.08 0.2 176 0.8
NSFI1 1.7 57 0.10 1.8 2.8 6.4 1600 0.27 2.8 1400 16.0
NSFI2 1.3 ‘58 ND |- 138 2.7 57 970 0.31 2.2 890 17.2
NSFI3 1.0 50 ND 1.6 1.8 5.6 950 0.22 1.9 890 17.5
NSFI4 1.0 54 ND 1.6 1.7 6.3 820 0.20 1.7 720 16.8
Mean 1.2 55 ND 1.7 2.3 6.0 1085 0.25 22 975 16.9
SD 0.3 4 0.1 0.6 . 04 350 0.05 0.5 294 0.7
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APPENDIX A. Tissue concentrations of heavy metals in Mytilus edulis in the Gulf of Maine, 1997.

(ug/g dry wt: mean and standard deviation (SD))

STATION| Pb Zn Ag cd Cr Cu Fe Hg Ni Al | % SOLID
NOVA SCOTIA
NSDII 3.6 76 ND 2.4 1.9 62 | 480 | 030 | 15 350 13.2
NSDI2 2.4 79 ND 1.2 2.5 64 | 520 | 039 | 14 | 400 14.0
NSDI3 2.9 108 | ND 14 14 75 | 507 | 033 1.5 366 14.8
NSDI4 2.3 95 ND 1.2 1.4 62 | 546 | 027 14 | 451 14.8
Mean 2.8 89 ND 1.5 1.8 66 | 513 | 032 | 14 392 14.2
SD 0.6 15 0.6 0.5 0.6 27 | 005 | 00 45 0.8
NSSC1 0.9 65 ND 0.8 0.9 45 | 470 | 026 | 11 170 19.8
NSSC2 1.5 56 ND 0.9 12 57 | 500 | 030 | 12 280 18.7
NSSC3 1.8 57 ND 1.0 1.6 56 | 700 | 035 1.4 460 16.7
NSSC4 1.7 s | ND 1.0 1.8 48 | 1100 | 031 14 650 17.2
Mean 1.5 58 ND 0.9 14 52 | 693 | 031 13 390 18.1
SD 0.4 5 0.1 04 06 | 290 | 004 | 02 211 1.4




APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight) |
Sample 1.D. NSSC1 |NSSC2 |[NSSC3 'NSSC4 NSDIl |NSDI2 |NSDI2 !NSDI3 NSDK4
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <82 | <82
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 15.8 34.6 33.5 41.9 <8.8
Acenaphthylene <5.9 <5.9 <5.9 <59 <59 <59 | <59 <59 | <59
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2,3,5-Trimethylnaphthaleng <9.8 <9.8 <9.8 <9.8 18.2 314 20.6 33.5 13.8
Fluorene <5.1 <5.1 <5.1 <5.1 8.8 12.2 10.4 12.8 8.6
Phenanthrene <8 <8 <8 <8 374 45.7 43.2 52.6 36.6
Anthracene <5.1 | <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 344 413 | 411 50.9 40.2
Fluoranthrene <85 | <85 | <85 | <85 | 192 | 205 | 221 | 283 | 22
Pyrene <12 <12 <12 <12 13.9 14.6 15.9 20.5 17.6
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene <8 <8 <8 <8 8.4 8.5 9.2 10.5 11.2
Benzo(b)fluoranthene <12 <12 <12 <12 <12 <12 12.5 13.6 12.8
Benzo(k)fluoranthene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(e)pyrene <l | <11 <11 <11 <11 <11 <11 <11 <11
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 | <6.6
Perylene <73 <7.3 <7.3 <7.3 <7.3 <73 <7.3 <73 <7.3
Indeno(123)pyrene <7.3 <7.3 <7.3 <7.3 <7.3 <7.3 <73 <73 <73
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h,i)perylene <11 <11 <11 <11 <11 <ll <ll <]l <11
Total -0 0 0 0| 156.1 | 208.8 | 2085 | 264.6 | 162.8
Surrogate Recoveries(%)
Napthalene_d8 83 68 71 72 17 18 23 19 21
Acenaphthene_d10 92 78 85 85 50 52 49 54 52
Phenanthrene_d10 90 87 89 94 73 80 76 83 79
Fluoranthene_d10 98 98 95 97 78 85 83 91 71
Chrysene_d12 92 94 91 92 83 86 83 87 122
Benzo(a)pyrene-d12 88 89 85 88 69 72 76 79 62
Benzo( g,h,i)perylene_dl 2 76 80 78 78 82 84 85 90 80
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)
Sample LD. NSFI1 |NSFI2 [NSFI3 |NSFI4 |[NSAR1 |[NSAR2 [NSAR3 |[NSAR4 |[NBLBI
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <82 | <82
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <89 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2.6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 | <838
Acenaphthylene <5.9 <5.9 <5.9 <59 <59 <59 | <59 <5.9 <59
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2,3.5-Trimethylnaphthaleng  <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 | <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene <8.5 <8.5 <8.5 <8.5 <8.5 <8.5 <85 <8.5 <8.5
Pyrene <12 <12 <l2 <12 <12 <12 <12 <12 <12
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene <8 <8 <8 <8 <8 <8 <8 <8 <8
Benzo(b)fluoranthene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(k)fluoranthene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(e)pyrene <11 <l <ll <11 <11 <11 <11 <11 <l1
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6
Perylene <7.3 <7.3 <7.3 <1.3 <7.3 <1.3 <7.3 <7.3 <7.3
Indeno(123)pyrene <73 <7.3 <73 <7.3 <73 <13 <73 <73 <7.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h,i)perylene <11 <il <1l <il <11 <l1 <11 <11 <Il
Total 0 0 0 0 0 0 0 0 0
Surrogate Recoveries(%)
Napthalene_d8 14 14 11 14 25 27 18 24 74
Acenaphthene_d10 33 35 33 41 65 72 53 71 87
Phenanthrene_d10 58 74 68 72 80 89 68 85 93
Fluoranthene_d10 66 85 83 80 95 93 75 88 96
Chrysene_d12 70 92 93 89 106 100 90 89 94
Benzo(é)pyrene-dlz 66 77 80 71 90 87 65 81 87
Benm,h,i)perylene_dlz 71 92 87 85 97 99 79 92 75
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)
Sample 1.D. NBLB2 |NBLB3 |NBLB4 |[NBCHI1 |NBCH2 |NBCH3 |[NBCH4 [NBNRI |[NBNR?2
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <82 | <82
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <89 ! <89
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <88 | <8.8
Acenaphthylene <5.9 <59 <5.9 <5.9 <59 <59 | <59 <59 | <59
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <64 | <64
2,3,5-Trimethylnaphthaleng  <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <98 | <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene <8.5 <8.5 <8.5 <8.5 <8.5 <8.5 <8.5 <85 | <85
Pyrene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene <8 <8 <8 <8 <8 <8 <8 <8 <8
Benzo(b)fluoranthene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(k)fluoranthene <12 <12 <12 <12 <12 <12 <12 <12 <12
Benzo(e)pyrene <11 <11 <11 <l1 <11 <11 <l1 <11 <11
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6
Perylene <7.3 <7.3 <7.3 <7.3 <73 <73 <7.3 <73 | <713
Indeno(123)pyrene <7.3 <73 <1.3 <73 <7.3 <13 <73 <13 <713
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h.i)perylene <11 <l1 <11 <11 <11 <11 <11 <11 <11
Total 0 0 0 0 0 0 0 0 0
Surrogate Recoveries(%)
Napthalene_d8 74 53 70 85 81 77 74 46 70
Acenaphthene_d10 88 62 84 92 92 88 83 65 82
Phenanthrene_d10 96 67 89 95 95 93 88 84 87
Fluoranthene_d10 100 79 95 99 101 99 98 92 90
Chrysene_d12 97 85 92 94 94 93 94 91 89
Benzo(a)pyrene-d12 90 81 88 94 89 90 91 85 91
Benzo(g,h,i)perylene_dlZ 80 72 76 79 76 77 78 74 74
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)
Sample 1.D. NBNR3 [NBNR4 |MECKI1 [MECK1 |[MECK2 |MECK3 |MECK4 |MEMRI  MEMR
Naphthalene <8.2 <8.2 11.7 9.3 <8.2 <8.2 <8.2 8.8 <8.2
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <88 | <8.8
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <5.9 <59 | <59 <5.9 <59
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2,3,5-Trimethylnaphthalenqd <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene <8 <8 <8 <8 <8 <8 <8 <8 8.2
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene <85 | <85 | <85 9.9 <85 | <85 | <85 129 | 17.1
Pyrene <12 <12 <12 <12 <12 <12 <12 <12 13.9
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene <8 <8 <8 <8 <8 <8 <8 <8 8.3
Benzo(b)fluoranthene <12 <12 . <12 <12 <12 <12 <12 <12 12.1
Benzo(k)fluoranthene <12 <12 <59 <5.9 <5.9 <5.9 <59 <5.9 <59
Benzo(e)pyrene <11 <11 <11 <11 <11 <]l <11 <11 <l1
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <66 | <6.6
Perylene <73 <7.3 <7.3 <1.3 <7.3 <7.3 <73 20.4 20
Indeno(123)pyrene <73 <73 <5.3 <5.3 <5.3 <53 <5.3 <53 <5.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h,i)perylene <11 <11 <11 <11 <11 <11 <l1 <11 <11
Total -0 0] 117 19.2 0 0 0 42.1 79.6
Surrogate Recoveries(%)
Napthalene_d8 79 66| 47 66 30 45 45 60 55
Acenaphthene_d10 90 78| 78 78 62 76 73 83 73
Phenanthrene_d10 97 88 91 86 81 87 89 91 90
Fluoranthene_d10 103 96| 91 91 88 88 94 96 98
Chrysene_d12 99 93] 96 94 89 89 97 97 98
Benzo(a)pyrene-dlZ 102 92| 66 69 67 66 69 78 77
Beuo(&h,i)perylene_dlZ 85 771 75 76 71 71 78 80 85
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)

Sample L.D. MEMR3 |MEMR4|MEURI] ;MEUR2 |MEUR3 [MEUR4 {MEKN1 |MEKN2 [MEKN
Naphthalene 8.3 7.3 11.5 11.4 <8.2 0 <8.2 <82 i <82
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 57 5.7 5.7 57 <8.9 <89 | <89
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <88 | <88 <8.8 <8.8
Acenaphthylene <5.9 <5.9 <59 <5.9 <59 <59 <59 <5.9 <5.9
Acenaphthene <6.4 <64 | <64 | <64 <6.4 <64 | <64 | <64 | <64
2,3,5-Trimethylnaphthaleng <9.8 <9.8 '<9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene <8 <8 7.5 9 9.1 <8 3.6 <8 <8
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene 14.2 12.6 30.5 33.1 38 25.8 16.9 13.5 13.8
Pyrene 12.5 10.5 313 31.7 39.3 25.9 21.8 18 18.6
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 10.7 <9.7 <9.7 <9.7 <9.7
Chrysene 8 <8 13.3 13.8 16.2 12.9 10.6 8.3 8.7
Benzo(b)fluoranthene 13.2 <12 16.9 16.2 18.8 15.2 <12 <12 <12
Benzo(k)fluoranthene <5.9 <5.9 <59 <5.9 6.7 7.9 <5.9 <5.9 <59
Benzo(e)pyrene <11 <11 15.2 12 14.8 13.6 <l1 <11 <11
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6
Perylene 19.7 17.1 <7.3 <7.3 7.6 <7.3 7.5 <7.3 <73
Indeno(123)pyrene <53 <53 <53 <5.3 <53 <5.3 <53 <53 <5.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h,i)perylene <11 <11 <11 <11 <11 <11 <11 <11 <11
Total 75.9 47.5 1319 | 1329 | 166.9 107 60.4 39.8 41.1
Surrogate Recoveries(%) [
Napthalene_d8 53 68 65 60 59 65 75 57 79
Acenaphthene_d10 70 76 79 83 69 78 84 68 84
Phenanthrene_d10 87 89 93 97 71 92 94 77 91
Fluoranthene_d10 96 101 97 102 82 96 96 84 94
Chrysene_d12 94 102 99 104 89 97 94 84 94
Benzo(a)pyrene-d12 74 86 78 82 74 77 78 64 82
Benzo(g,h.i)perylene_d12 79 83 81 86 74 78 87 73 | 8
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight) |
Sample I.D. MEKN3 |MEKN4 |MEPR1 |MEPR2 IMEPR3 |MEPR4 |MEPH1 |MEPH2 |MEPH3
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 23.8 174 9.3
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 18.5 15.6 9.6
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 11.3 8.9 57
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethyinaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <88 | <838
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <5.9 <59 | <59 <5.9 <5.9
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 10.1 7.1 6.7
2.3,5-Trimethylnaphthaleng <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 9.6 8.6 6.9
Phenanthrene <8 <8 13.6 10.9 10.9 11.8 53.1 46.9 28.1
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 10.1 9.2 <5.1
1-Methylphenanthrene <8 <8 8.6 79 <8 <8 26.3 244 13.7
Fluoranthrene 14.5 14.6 54.8 54.5 44.2 48.6 3346 | 3193 | 189.6
Pyrene 19.2 18.3 41.8 41.8 33.5 379 300.1 | 269.8 | 170.7
Benzo(a)anthracene <9.7 <9.7 10.6 11.6 <9.7 <9.7 96.5 83 53.1
Chrysene 8.7 9.1 25.9 26.3 20.7 21.9 223.1 199.2 | 1314
Benzo(b)fluoranthene <12 <12 22.9 20.7 16.6 16.6 198.7 | 168.3 111
Benzo(k)fluoranthene <5.9 <5.9 7.1 6.9 7.7 5.8 66.6 56.6 40
Benzo(e)pyrene <11 <11 16.8 17.3 14 16 158.3 | 145.1 96
Benzo(a)pyrene <66 | <66 | <66 | 69 | <66 | <66 | 486 | 397 | 283
Perylene <7.3 <7.3 <7.3 7.8 <1.3 7.6 23 22.2 15.1
Indeno(123)pyrene <5.3 <5.3 6.9 7.1 <5.3 5.8 48.8 389 26.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 8.7 7.9 4.5
Benzo(g,h,i)perylene <11 <11 <11 <11 <11 <11 53.3 449 31.7
Total 424 42 209 219.7 | 1476 172 1723.1 | 1533 | 9777
Surrogate Recoveries(%)
Napthalene_d8 72 29 65 58 71 53 53 32 47
Acenaphthene_d10 79 59 78 66 80 67 65 76 59
Phenanthrene_d10 89 79 92 78 89 81 84 93 70
Fluoranthene_d10 89 86 96 91 92 89 97 105 76
Chrysene_d12 88 86 96 95 93 88 97 107 77
Benzo(a)pyrene-du 76 62 78 75 74 67 82 85 64
Benzo(g,h,i)perylene_dlZ 79 79 83 84 82 79 76 89 61
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis . |

(ng/g dry weight) !

Sample L.D. MEPH4 | MESA1 | MESA2| MESA3 | MESA4 | MECC1| MECC2 | MECC3 IMECC4
Naphthalene 20 <8.2 <8.2 <8.2 <8.2 <§.2 <8.2 <8.2 <8.2
2-Methylnaphthalene 13.9 <9 <9 | <9 <9 <9 <9 <9 <9
1-Methylnaphthalene 5.7 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <88 | <88
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <59 <59 | <59 <59 <59
Acenaphthene 8.9 <6.4 <6.4 <6.4 <64 <6.4 <6.4 <6.4 <6.4
2,3,5-Trimethylnaphthaleng <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <98 | <9.8
Fluorene 7.3 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene 42.6 <8 9.9 <8 8.5 11.2 10.0 8.9 9.1
Anthracene 7.5 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene 15.9 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene 238.6 12.7 22.4 15.6 16.3 38.1 354 34.9 28.6
Pyrene 205.7 10.8 21.8 13.1 154 33.6 31.8 33.0 25.3
Benzo(a)anthracene 71.5 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene | 1554 6.1 11.2 7.6 7.9 18.3 16.8 16.5 13.8
Benzo(b)fluoranthene 150.5 7.2 134 8.5 9.5 19.4 18.9 18.1 15.0
Benzo(k)fluoranthene 54.6 <5.9 74 <5.9 <5.9 6.8 6.4 8.3 7.6
Benzo(e)pyrene 116 <11 12.9 <11 <11 19.5 20.2 18.0 13.9
Benzo(a)pyrene 38.6 <6.6 <6.6 <6.6 <6.6 7.9 6.7 7.5 <6.6
Perylene 21 <7.3 <7.3 <7.3 <7.3 <7.3 <7.3 <7.3 <73
Indeno(123)pyrene 41.7 <5.3 <5.3 <5.3 <5.3 8.0 7.1 6.9 5.8
Dibenzo(ah)anthracene 7 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
Benzo(g,h,i)perylene 43.6 <11 <11 <11 <il <l1 <l1 <11 <11
Total 1266 | 36.795198.9103| 44.8692 | 57.5851 | 162.849 | 153.432( 152.034| 119.29
Surrogate Recoveries(%)

Napthalene_d8 65 70 66 70 57 80 72 65 59
Acenaphthene_d10 79 85 79 85 79 91 83 79 71
Phenanthrene_d10 90 98 90 95 96 101 95 92 84
Fluoranthene_d10 ' 99 102 100 97 100 103 101 97 88
Chrysene_d12 99 106 103 101 104 106 106 104 93
Benzo(a)pyrene-d12 79 84 76 77 78 88 90 81 70
Benzo(&h,i)perylene_dlZ 81 83 80 79 81 85 83 79 73
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight) -
Sample I.D. NHDP! | NHDP1 {NHDP2 | NHDP3 NHDP4 | NHRH1 | NHRH2 | NHRH3 |NHRH4
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <89 | <89
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2.6-Dimethyinaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 | <88
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <5.9 <59 <5.9 <5.9 <5.9
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2,3,5-Trimethylnaphthaleng <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene <8 <8 14.5 <8 <8 <8 <8 <8 <8
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene 43.6 452 |- 50.8 38.8 323 22.1 21.7 19.7 20.0
Pyrene 50.0 53.2 55.0 44.2 37.0 18.6 18.7 16.8 21.7
Benzo(a)anthracene 18.9 19.9 20.7 16.3 15.0 <9.7 <9.7 <9.7 | <9.7
Chrysene 31.3 34.9 33.3 29.5 24.6 134 14.1 11.7 13.3
Benzo(b)fluoranthene 393 45.2 41.2 38.5 29.0 11.9 15.2 11.8 12.9
Benzo(k)fluoranthene 13.4 16.2 14.3 16.3 10.6 <59 <5.9 <59 <59
Benzo(e)pyrene 329 38.8 339 31.6 24.7 <11 <11 <11 12.4
Benzo(a)pyrene 8.7 10.3 9.1 11.0 94 <6.6 <6.6 <66 | <6.6
Perylene 13.9 14.0 13.0 12.9 9.6 <7.3 <7.3 <73 <13
Indeno(123)pyrene 8.7 7.3 8.8 7.9 8.6 <5.3 <5.3 <5.3 <5.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6
{Benzo(g,h.i)perylene 12.2 11.6 12.2 11.1 11.9 <11 <11 <11 <11
Total 272.9 1296.698| 306.8 | 258.087| 212.7 | 66.055 | 69.7866| 60.1149| 80.3
Surrogate Recoveries(%)
Napthalene_dS8 93 66 84 63 76 71 68 74 66
Acenaphthene_d10 98 81 90 76 85 82 80 86 73
Phenanthrene_d10 105 93 95 89 92 90 94 94 84
Fluoranthene_d10 106 106 97 95 98 101 101 101 94
Chrysene_d12 103 117 95 96 98 108 108 110 97
Benzo(a)pyrene-dlZ 90 90 84 81 85 81 87 91 84
Benzo(j,h,i)perylene_dIZ 91 90 85 77 86 81 84 88 86
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

|(ng/g dry weight)
Sample I.D. MAIPI | MAIP2 | MAIP3 | MAIP4 | MATP4 IMAWNIMAWN2MAWN3MAWNA
Naphthalene <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <82 | <82
2-Methylnaphthalene <9 <9 <9 <9 <9 <9 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 8.2
2.6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <5.9 <59 <59 <5.9 <5.9
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2.3,5-Trimethylnaphthaleng  <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
Phenanthrene 11.1 11.5 104 11.8 11.3 14 18 15.4 17.2
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene <8 <8 <8 <g <8 4.3 5.5 44 5.1
Fluoranthrene 26.7 29.6 29 28.1 26.1 38.5 48.5 42.8 46.1
Pyrene 224 24.5 23.9 24.6 21.9 43.5 53.7 45.9 50.7
Benzo(a)anthracene <9.7 <9.7 <9.7 <9.7 <9.7 11.3 12.7 11.5 11.2
Chrysene 13.3 15.5 16.1 15.3 13.3 20.3 244 20.7 20.2
Benzo(b)fluoranthene 13.2 | 138 15.1 14 12.8 17.4 22.9 16.8 18.8
Benzo(k)fluoranthene <59 <5.9 59 5.9 <5.9 8.2 7 8.1 84
Benzo(e)pyrene 12.2 13.5 14.1 144 11.9 18.2 21.8 19 20.7
Benzo(a)pyrene <6.6 <6.6 6.5 <6.6 <6.6 7.5 8.1 7.2 6.7
Perylene <7.3 <7.3 <7.3 <7.3 <7.3 <7.3 <7.3 <13 <7.3
Indeno(123)pyrene <5.3 <5.3 <5.3 <5.3 <5.3 <5.3 5.9 5 5
Dibenzo(ah)anthracene <3.6 <3.6 4.2 <3.6 <3.6 4.8 4.8 4.5 4.5
Benzo(g.h,i)perylene <11 <I1 <ll1 <1l <11 <11 <11 <11 <11
Total 98.9 1084 | 125.2 | 114.1 97.3 188 233.3 | 201.3 | 2228
Surrogate Recoveries(%)
Napthalene_d8 71 69 60 83 80 68 78 71 75
Acenaphthene_d10 86 81 74 95 90 77 86 83 86
Phenanthrene_d10 96 87 91 108 100 83 98 97 94
Fluoranthene_d10 100 95 104 109 101 90 102 105 101
Chrysene_d12 99 100 104 110 100 87 103 105 100
Benzo(a)pyrene-d12 73 77 81 76 73 77 84 84 80
Benzo(g,h,i)perylene_dlZ 85 87 91 92 85 78 88 89 85
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)
Sample I.D. MABII [MABI2 IMADX1{MADX2/MADX3|MADX4| MASN1| MASN2 MASN3
Naphthalene 11.6 17.1 10.7 10.8 9.3 <8.2 <8.2 <8.2 <8.2
2-Methylnaphthalene <9 <9 144 15.1 14.2 11.6 <9 <9 <9
1-Methylnaphthalene <8.9 <8.9 8.9 9.1 <8.9 <8.9 <8.9 <8.9 <8.9
Biphenyl <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1 <6.1
2,6-Dimethylnaphthalene <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8 <8.8
Acenaphthylene <5.9 <5.9 <5.9 <5.9 <5.9 <59 | <59 <5.9 <5.9
Acenaphthene <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4 <6.4
2,3,5-Trimethylnaphthaleng <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8
Fluorene <5.1 <5.1 7.4 7.6 7.1 57 <5.1 | <5.1 <5.1
Phenanthrene 26.6 24.9 35.7 34.5 32.7 28.8 13 114 11.7
Anthracene <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1 <5.1
1-Methylphenanthrene 114 10.2 <8 <8 <8 <8 <8 <8 <8
Fluoranthrene 59.2 53.1 33.8 | 329 | 298 | 315 14.6 149 | 155
Pyrene 51.6 46.2 18.9 17.5 16 20.7 <12 <12 <12
Benzo(a)anthracene 14 12.8 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7
Chrysene 37.8 35.8 8.8 8.8 <8 104 <8 <8 <8
Benzo(b)fluoranthene 21.8 20.2 <12 <12 <12 <12 <12 <12 <12
Benzo(k)fluoranthene 7.6 7.2 <5.9 <5.9 <5.9 <5.9 <5.9 <5.9 <5.9
Benzo(e)pyrene 26.2 24.6 <11 <11 <11 <11 <11 <11 <11’
Benzo(a)pyrene <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6 <6.6
Perylene <7.3 <73 <7.3 <13 <73 <7.3 <73 <7.3 <7.3
Indeno(123)pyrene <5.3 <5.3 <5.3 <5.3 <5.3 <5.3 <5.3 <5.3 <5.3
Dibenzo(ah)anthracene <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <3.6 <36 | <3.6
Benzo(g,h,i)perylene <11 <11 <11 <11 <11 <11 <11 <l1 <11
Total 267.8 | 252.1 | 138.6 | 1363 | 109.1 | 1087 | 27.6 26.3 27.2
Surrogate Recoveries(%)
Napthalene_d8§ 88 87 78 79 73 60 69 67 72
Acenaphthene_d10 91 92 88 89 87 71 85 74 81
Phenanthrene_d10 99 98 100 100 97 80 95 88 89
Fluoranthene_d10 104 104 104 101 102 92 98 96 96
Chrysene_d12 102 100 104 104 100 100 95 103 99
Benzo(a)pyrene-d12 87 84 94 91 87 88 73 85 85
Benzo(&h,i)perylene_dlz 93 92 91 90 89 90 82 87 86
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APPENDIX B. Tissue concentrations of polyaromatic hydrocarbons in Mytilus edulis .

(ng/g dry weight)
Sample L.D. MASN4
Naphthalene <8.2
2-Methylnaphthalene <9
1-Methylnaphthalene <8.9
Biphenyl <6.1
2.6-Dimethylnaphthalene <8.8
Acenaphthylene <5.9
Acenaphthene <6.4
2,3,5-Trimethylnaphthalend <9.8
Fluorene <5.1
Phenanthrene 11.4
Anthracene <5.1
1-Methylphenanthrene <8
Fluoranthrene 14.9
Pyrene <12
Benzo(a)anthracene <9.7
Chrysene | <8
Benzo(b)fluoranthene 2.8
Benzo(k)fluoranthene <59
Benzo(e)pyrene <11
Benzo(a)pyrene <6.6
Perylene <7.3
Indeno(123)pyrene <5.3
Dibenzo(ah)anthracene <3.6
Benzo(g,h.i)perylene <11
Total 29.1
Surrogate Recoveries(%)
Napthalene_d8 76
Acenaphthene_d10 83
Phenanthrene_d10 93
Fluoranthene_d10 B 96
Chrysene_d12 97
Benzo(a)pyrene-d12 71
Benzo(g.h.i)perylene_d12 | 84
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Appendix E. Polychlorinated dibenzodioxins and polychlorinated dibenzofurans

(pg/g wet weight).
Component MAWN2 NHRH4 NHDP2 MEPH3 MEPR1 MESA3 NBNR2 NBLB3
Total Tetrachlorodibenzofurans 28 <0.83 3.0 0.86 1.7 0.72 1.1 1.5
Total Pentachlorodibenzofurans 25 <0.40 <2.1 0.56 27 1.6 0.88 1.3
Total Hexachiorodibenzofurans 21 0.36 <1.0 0.90 53 2.1 0.74 1.0
Total Heptachlorodibenzofurans 0.74 0.54 20 <0.60 3.0 23 22 2.7
Octachlorodibenzofuran 0.77 0.53 <19 0.73 1.6 1.2 1.1 <1.2
Total Tetrachlorodibenzo-p-dioxins 38 1.5 10 0.89 <036 <041 <043 <073
Total Pentachlorodibenzo-p-dioxins <0.52 <0.41 <15 <035 <038 <036 <058 <0.71
Total Hexachlorodibenzo-p-dioxins 2.5 1.1 24 1.1 28 1.6 0.64 <0.65
Total Heptachlorodibenzo-p-dioxins 6.7 32 12 42 6.4 5.6 45 35
Octachlorodibenzo-p-dioxin 13 4.6 24 6.7 9.4 6.7 8.1 38
2,3,7,8-Cl4-Dibenzofuran 1.9 <0.83 3.0 0.86 1.7 0.72 1.1 1.5
2,3,7,8-Cl4-Dibenzo-p-dioxin <0.56 <0.61 <l.6 0.89 <036 <041 <043 <073
1,2,3,7,8-CIS-Dibenzofuran <0.28 <0.40 <14 <035 <031 <032 <041 <077
2.3,4,7,8-Cl5-Dibenzofuran 0.61 <040 <14 <036 066 <033 045 <0.78
1,2,3,7,8-Cl15-Dibenzo-p-dioxin <0.43 <0.41 <1.0 <035 <038 <036 <058 <0.71
1.2,3,4,7,8-Cl6-Dibenzofuran 0.46 <031 <092 <0.32 1.3 <0.69 <047 <0.75
1,2.3,6,7,8-Cl6-Dibenzofuran’ 0.33 0.31 <0.95 0.33 0.71 0.63 <041 0.88
2,3,4,6,7,8-Cl6-Dibenzofuran 0.38 <0.35 <1.0 <0.36 1.3 0.65 <053 <0.84
1,2,3,7,8,9-Cl6-Dibenzofuran <0.35 <0.38 <l.1 <038 <041 <049 <057 <091
1,2,3,4,7,8-Cl6-Dibenzo-p-dioxin <0.45 <039 <18 <035 <047 <042 <050 <0.70
1,2,3,6,7,8-Cl6-Dibenzo-p-dioxin <0.39 <0.34 <l.6 <030 <041 <036 <043 <0.61
1,2,3,7,8,9-Cl6-Dibenzo-p-dioxin <041 <0.36 <1.6 <0.32 0.83 <038 <046 <0.64
1,2,3,4,6,7,8-Cl7-Dibenzofuran <0.81 0.50 <1.3 <0.56 1.9 1.5 1.3 1.7
1,2.3,4,7,8,9-Cl7-Dibenzofuran <0.59 <040 <l1.1 <048 <063 <059 <059 <0.78
1,2,3,4,6,7,8-Cl17-Dibenzo-p-dioxin 32 1.5 5.6 1.8 3.1 2.7 2.3 2.1
1,2,3,4,6,7,8,9-Cl8-Dibenzofuran 0.77 0.53 <1.9 0.73 1.6 12 1.1 <1.2
1,2,3,4,6,7,8,9-C18-Dibenzo-p-dioxin 13 4.6 24 6.7 9.4 6.7 8.1 38
Surrogate Recoveries %
2,3,7,8-T4CDF-13C12 31 20 23 22 32 33 25 32
2,3,7,8-T4ACDD-13C12 30 20 23 22 32 33 26 32
1,2,3,7,8-P5CDF-13C12 38 30 31 32 38 40 34 39
1,2,3,7,8-PSCDD-13C12 54 45 43 51 45 56 47 55
1,2,3,6,7,8-H6CDF-13C12 56 50 48 48 57 57 53 51
1.2,3,6,7,8-H6CDD-13C12 . 62 60 55 65 63 71 62 73
1,2,3,4,6,7,8-H7CDF-13C12 66 63 59 59 69 68 64 59
1,2,3,4,6,7,8-H7CDD-13C12 72 69 65 62 74 72 72 62
OCDD-13C12 67 66 61 60 74 70 69 60
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Appendix E. Polychlorinated dibenzodioxins and polychlorinated dibenzofurans

(pg/g wet weight).
Component NBLB3 MADX MAIP MABI NSAR NSSC
Total Tetrachlorodibenzofurans .<2.0 <34 1.1 33 <0.76 <8.9
Total Pentachlorodibenzofurans <0.72 091 <0.78 1.8 0.52 <0.43
Total Hexachlorodibenzofurans 0.74 0.50 0.54 <0.57 0.47 <0.44
Total Heptachlorodibenzofurans 1.8 1.8 1.5 <3.2 <0.88 <0.51
Octachlorodibenzofuran 0.95 19 1.0 <0.81 . <2.7 <0.56
Total Tetrachlorodibenzo-p-dioxins <0.85 0.99 <0.55 10.0 <0.67 <16
Total Pentachlorodibenzo-p-dioxins <0.68 <0.52 <l.1 <1.3 <0.54 <0.48
Total Hexachlorodibenzo-p-dioxins <0.79 23 1.8 <l.1 <0.74 <0.89
Total Heptachlorodibenzo-p-dioxins 6.9 8.9 7.4 <4.7 1.1 23
Octachlorodibenzo-p-dioxin 13 17 13 4.4 32 4.2
2,3,7,8-Cl4-Dibenzofuran <l.1 <1.2 1.1 33 <0.76 <1.3
2.3,7.8-Cl4-Dibenzo-p-dioxin <0.85 <0.84 <0.55 <4.3 '<0.67 <19
1,2,3,7,8-C15-Dibenzofuran <0.72 <0.51 <0.52 <0.89 <0.46 <0.44
2,3,4,7,8-Cl5-Dibenzofuran <0.73 <0.50 <0.50 <0.87 <0.44 <042
1,2,3,7,8-C15-Dibenzo-p-dioxin <0.68 <0.52 <l.1 <13 <0.54 <0.48
1,2,3,4,7,8-Cl6-Dibenzofuran <0.67 <041 <0.45 <0.55 <0.41 <0.42
1,2,3,6,7,8-Cl6-Dibenzofuran 0.62 <0.37 <0.40 <0.49 0.40 <0.38
2,3,4,6,7,8-Cl6-Dibenzofuran <0.76 <0.46 <0.50 <0.60 <0.45 <0.47
1,2,3,7,8,9-Cl6-Dibenzofuran <0.82 <0.50 <0.54 <0.66 <0.49 <0.51
1,2,3,4,7,8-Cl6-Dibenzo-p-dioxin <0.85 <0.88 <0.72 <1.2 <0.77 <0.86
1,2,3,6,7,8-Cl6-Dibenzo-p-dioxin <0.74 <0.80 <0.65 <1.1 <0.70 <0.84
1,2,3,7,8,9-Cl6-Dibenzo-p-dioxin <0.78 <0.86 <0.70 <1.2 <0.76 <0.84
1,2,3,4,6,7,8-Cl7-Dibenzofuran 0.97 0.75 0.68 <3.0 <0.82 <0.48
1,2,3,4,7,8,9-CI7-Dibenzofuran <0.74 <0.66 <0.44 <34 <0.94 <0.55
1,2,3,4,6,7,8-Cl7-Dibenzo-p-dioxin 2.7 38 33 <4.7 <0.99 1.5
1,2,3,4,6,7,8,9-Cl18-Dibenzofuran 0.95 1.9 1.0 <0.81 <2.7 <0.56
1,2,3,4,6,7,8,9-Cl8-Dibenzo-p-dioxin 13 17 13 4.4 32 42
Surrogate Recoveries %
2,3,7,8-T4CDF-13C12 22 30 41 43 62 44
2,3,7,8-T4CDD-13C12° 22 31 40 42 62 44
1,2,3,7,8-PSCDF-13C12 30 46 55 49 61 55
1,2,3,7,8-PSCDD-13C12 42 54 62 54 59 62
1,2,3,6,7,8-H6CDF-13C12 46 66 71 57 66 66
1,2,3,6,7,8-H6CDD-13C12 52 73 80 62 71 72
1,2,3,4,6,7,8-H7CDF-13C12 56 76 77 61 67 69
1,2,3,4,6,7,8-H7CDD-13C12 61 79 83 65 70 86
OCDD-13C12 60 79 79 61 67 68




QA for 1997 Metals Analysis

Standards as samples

(ppm) silver aluminum [cadmium [chromijum |copper iron Tead nickel ZInc
GROUP 1

expected 0.1 1 1 1 1 1 1 1 1
recovered a 0.101 0.98 1 0.99 0.99 1 0.99 1 1
recovered b 0.1 1 1.01 1 1 1.01 1.01 1.01 1.01
recovered ¢ 0.103 0.99 1.02 0.99 1 0.98 1 1.03 1.02
GROUP 2

expected 0.1 1 1 1 1 1 1 1 1
recovered a 0.102 1 0.99 0.99 0.99 0.98 0.99 0.99 0.99
recovered b 0.099 0.97 0.98 0.98 0.97 0.99 0.98 0.97 0.98
recovered ¢ 0.1 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.96
GROUP 3

expected 0.1 1 1 1 1 1 1 1 1
recovered a 0.1 1 1 1 0.99 1.01 1.01 0.99 1
recovered b 0.099 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
recovered ¢ 0.098 0.98 0.99 0.98 0.99 0.99 1.01 0.99 0.99
GROUP 4

expected 0.1 1 1 1 1 1 1 1 1
recovered a 0.1 1.02 1.01 1 1 1 1 1.01 1.01
recovered b 0.1 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.02
recovered ¢ 0.1 0.97 1 0.99 0.99 0.99 0.99 1 1
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QA for 1997 Metals Analysis

I ]
Standards as samples MERCURY
@g)
DATE RUN 4-Jun 12-Jun 13-Jun 18-Jun 26-Jun 27-Jun 1-Jul
expected 0.2 0.2 0.2 0.2 0.2 0.2 0.2
recovered a 0.22 0.19 0.19 0.19 0.19 0.19 0.19
% recov 110 95 95 95 95 95 95
LFB's (ug)
exp. 0.2 0.2 0.2 0.2 0.2 02 0.2
recov 02 0.199 0.19 0.19 0.21 0.21 0.21
% recov 100 99.5 95 95 105 105 105
blanks ND.O1 ND.O1 ND.O1 ND.01 ND.O1 ND.O1 ND.01
(ug/gm)
DUPS (ug/gm)
# 4353 4349 4355 4348 4345 4365 4367
A 0.51 0.23 0.44 0.64 0.63 0.63 1.41
B 0.48 0.22 0.57 0.69 0.62 0.63 1.42
mean 0.495 0.225 0.505 0.665 0.625 0.63 1.415
rel. diff. 6.06 4.444 25.743 7.519 1.60 0| 0.7067138
# 4353 4349 4355 4348 4345 4365 4367
spike value (ug) 0.1 0.2 0.2 0.2 0.2 02 0.2
expected 0.199 0.397 0.398 0.394 0.398 0.395 0.396
obtained 0.204 0.424 0.409 0.392 0.438 0411 0.41
% recovery 102.5 106.8 102.8 99.49 110.1 104.1 103.5
dorm-1 (ug/gm wet) OYSTER
expected 0.0642 4.64 4.64 4.64 4.64 4.64 4.64
obtained 0.04 4.98 4.93 3.69 4.93 4.86 4.71
% recovery 62.31 107.33 106.25 79.53 106.25 104.74 101.51
dorm-1 (ug/gm wet)
expected 4.64
obtained 5.02
% recovery 108.19
eral000 (ug)
expected 0.2 0.2 0.2 0.2 0.2 0.2 0.2
obtained 0.218 0.212 0.191 0.22 0.214 0.209 0.203
% recovery 109 106 95.5 110 107 104.5 101.5
1974a + eral000  |(ug)
expected 0.2 0.2 0.2 0.2 0.2 0.2
obtained 0.199 0.205 0.23 0.22 0.21 0.21
% recovery 99.5 102.5 115.0 110 105 105

F2




QA for 1997 Metals Analysis

I T
Reagent Blanks
(ppm) i , i
GROUP 1 silver aluminum |cadmium {chromium |copper iron lead nickel zinc
recovered a ND.0005 |ND.02 ND.0005 [{ND.001 |[ND.002 |ND.0O2 ND.004 [ND.00O1 |ND.0025
recovered b ND.0005 |ND.02 ND.0005 |[ND.001 [ND.002 |ND.02 ND.004 |ND.001 ND.0025
GROUP2
recovered a ND.0005 |ND.02 ND.0005 [ND.001 |ND.002 IND.02 ND.004 |ND.0O1 0.006
recovered b ND.0005 |ND.02 ND.0005 [ND.001 0.012|ND.02 ND.004 |ND.001 ND.0025
GROUP 3
recovered a ND.0005 |ND.02 ND.0005 |ND.001 ND.002 |[ND.02 ND.004 ND.OO] ND.0025
recovered b ND.0005 |ND.02 ND.0005 |ND.001 [ND.002 |ND.02 ND.004 |ND.001 ND.0025
GROUP 4
recovered a 0.0005|ND.02 ND.0005 |ND.001 ND.002 |ND.02 ND.004 |ND.001 0.007
recovered b ND.0005 |ND.02 ND.0005 [ND.001 [ND.002 |[ND.02 ND.004 |ND.001 ND.0025




QA for 1997 Metals Analysis

Laboratory Fortified Blanks

(ppm) .

GROUP 1 silver aluminum [cadmium |chromium |copper iron lead nickel zinc

true value 0.01 2 0.01 0.03 0.05 2 0.01 0.01 1
rec. value 0.0107 1.94 0.01 0.0315 0.0495 1.87 0.0105 0.0102 0.96
% recovery 107 97 100 105 99 93.5 105 102 96
rec. value 0.0107 1.98 0.0101 0.0321 0.0493 1.9 0.0097 0.0105 1
% recovery 107 99 101 107 98.6 95 97 105 100
GROUP 2

true value 0.01 2 0.01 0.03 0.05 2 0.01 0.01 1
rec. value 0.0103 1.88 0.0093 0.0283 0.0462 1.72 0.0096 0.01 0.91
% recovery 103 94 93 94.33 92.4 86 96 100 91
rec. value 0.0104 1.91 0.0094 0.0286 0.0485 1.8 0.0109 0.01 0.92
% recovery 104 95.5 94| 95.333333 97 90 109 100 92
GROUP 3

true value 0.01 2 0.01 0.03 0.05 2 0.01 0.01 1
rec. value 0.0111 1.99 0.0098 0.0301 0.0501 1.85 0.0094 0.0103 0.97
% recovery 111 99.5 98 100.33 100.2 92.5 94 103 97
rec. value 0.0103 1.93 0.0095 0.0293 0.0484 1.8 0.0093 0.0095 0.94
% recovery 103 96.5 95 97.67 96.8 90 93 95 94
GROUP 4

true value 0.01 2 0.01 0.03 0.05 2 0.01 0.01 1
rec. value 0.0099 1.91 0.0099 0.0295 0.0505 1.8 0.0112 0.0098 0.95
% recovery 99 95.5 99| 98.333333 101 90 112 98 95
rec. value 0.0095 1.98 0.0098] = 0.029 0.0488 1.8 0.0073 0.0098 0.97
% recovery 95 99 98 96.7 91.6 90 73 98 97
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QA for 1997 metal§ analysis
Knowns
GROUP 1 silver aluminum {cadmium |chromium [copper iron lead nicke] zinc
(ppm) ERA2&ERA3
true value 0.1 1 0.1 0.1 0.1 L 0.1 0.1 0.1
rec. value 0.104 0.99 0.1 0.1 0.095 0.93 0.096 0.101 0.099
% recovery, 104.0 99.00 100.00 100.00 95.00 93 96 101.00 99.00
rec. value 0.101 0.99 0.098 0.1 0.096, 0.93 0.097 0.1 0.098
% recovery| 101.00 99.00 98 100.00 96.00 93.00 97.00 100.00 98.00
rec. value 0.104 0.97 0.099 0.098 0.093 0.91 0.095 0.102 0.099
% recovery 104.0 97.0 99.0 98.0 93.0 91 95.0 102.0 99
1566a oyster
(mg/kg dry wo)
v T 2025 15 33 LX) 339 V3TT Z.25 — 830
rec. value 1.76 108 4.25 1.26 67 468 0.313 237 797
% recovery 105 53 102 88 101 87 84 105 96
1974a el
(mg/kg wet wt)
tv 0.068 51 0.24 357 119
rec val 0.0777 23 0.24] 40 119
[% recovery| 114 43 100 70 100
GROUP 2
(ppm) ERAZEZ ERA3
true value 0.1 1 0.1 0.1 0.1 1 0.1 0.1 0.1
rec. value 0.103 0.98 0.097 0.098 0.094 09 0.095 0.098 0.097
% recovery 103 98.00 97.00 98.00 94.00 90.00 95.00 98.00 97.00
rec. value 0.103 1 0.1 0.101 0.098 0.95 0.097 0.101 0.099
% recovery 103 100.00 100 101.00 98.00 95.00 97.00 101.00 99.00
rec. value 0.101 1 0.098 0.099 0.096 0.92 0.096 0.099 0.097
% recovery 101 100 98 99 96 92 96 99 97
1566a oyster
(mg/kg dry wt)
tv 1.68 202.5 4.15 143 66.3 539 0.371 2.25 830
rec. value 179 78 4 0.84, 63 438 0.44 3 763
% recovery 107 39 96 59 95 81 119 133 92
1974a ]
mp/kg wet wt
fv?kg ! —0.068 31 0.24 S 119
rec val 0.075 17 0.2 37 11
[% recovery| 110 33 B3 65 92
'GROUPS
[(ppm) | 3
true value 0.1 1 0.1 0.1 0.1 1 0.] 0.1 0.1
rec. value 0.102 0.99 0.098 0.1 0.096 0.92 0.094 0.099 0.096
% recovery 102.0 99 98.00 100.00 96.00 92.00 94 99.00 96.00
rec. value 0.1 0.99 0.098 0.099 0.096 0.91 0.094 0.098 0.096
% recovery| 100.0 99 98.00 99.00 96.00 91.00 94.00 98.00 96.00
rec. value 0.099 0.99 0.098 0.099 0.096 0.91 0.095 0.099 0.096
% recovery 99.0 99.00 98.00 99.00 96.00 91.00 95.00 99.00 96.00
1566a oyster
(mg/kg dry wo)
tv 1.68 202.5 4.15 1.43 66.3 539 0.371 2.25 830
rec. value 1.67 83 4.22 0.89 65.5 472 0.31 222 822
% recovery 99 41 102 62 99 88 84 99 99
1974a mussel
wet Wi
%’n& 0 X 51 [ - 57 119
rec val 0.0 17 0.21 .2 10.7
% recovery 12 33 - T0[
GROUP 4
ppm 3
true value 0.1 1 0.1 0.1 0.1 1 0.1 0.1 0.1
rec. value 0.98 1 0.098 0.098 0.096 0.91 0.094 0.098 0.097
% recovery 980.0 100 98.00 98.00 96 91.0. 94.0 938.0 97
rec. value 0.098 1.02 0.1 0.1 0.097 0.93 0.096 0.101 0.099
% recovery 98.0 102.00 100.00 100.00 97.00 93 96.00 101.00 99.00
rec. value 0.099 1 0.099 0.098 0.096 0.91 0.096 0.099 0.098
% recovery 99.0, 100.00 99.00 98.00 96.00 91.0 96.00 99.00 98.00
1566a oyster
{(mg/kg dry wt) :
v 1.68 2025 4.15 143 66.3 539 0.371 2.25 830
rec. value 1.71 94 43 0.95 67.9 475 031 2.15 852
% recovery| 102 46 104, 66 102 88 84 96 103
1974a
wet Wi
fv__mg/kg . 0.068 351 —0.24 57 115
Tec val 0.043 .6 02T ) 13
% recovery| 63 32 88 g ()
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DUPLICATES (mg/kg dry wt)
GROUP 1 #4345

SILVER |ALUMINUM |CADMIUM|CHROMIUM |COPPER |IRON |LEAD|NICKEL [ZINC
REP 1 0.33 277 191 1.8 8.1] 555 430 2.1 101
REP 2 0.38 259 192 1.78 8.6/ 539 4.30 2.1 101
MEAN 0.355 268 1915 1.79 835| 547 430 2.1} 101
REL % DIFF 14.08 6.72 0.522 1.12 599, 2.93| 0.00 0] 0.00
GROUP 1 #4359

SILVER |ALUMINUM |CADMIUM|CHROMIUM|COPPER |[IRON |LEAD|NICKEL |ZINC
REP 1 ND 0.1 268 1.66 1.55 6.3| 406/ 3.36 1.24 93
REP 2 ND 0.1 250 1.37 1.34 52| 354 274 1.04 79
MEAN ok 259 1.515 1.445 5.75] 380] 3.05 1.14 86
REL % DIFF [*** 6.95 19.142 14.53 19.13] 13.68| 20.33 17.54| 16.28
GROUP 2 #4370

SILVER |(ALUMINUM |CADMIUM|CHROMIUM |COPPER |IRON |LEAD|NICKEL |[ZINC
REP 1 NDO.1 189 0.85 0.63 4.5] 239 0.80|ND 0.8 74
REP 2 ND 0.1 175 0.81 0.63 42| 227/ 0.60|ND 0.8 72
MEAN ek 182 0.83 0.63 4.35| 233] 0.70(** 73
REL % DIFF |** 7.69 4.82 0.00 6.90| 5.15| 28.57|** 2.74
GROUP 2 #4398

SILVER |ALUMINUM |CADMIUM|CHROMIUM COPPER |[IRON |LEAD|NICKEL [ZINC
REP 1 ND 0.1 820 22 1.9 62| 990] 1.20 1.8 51
REP 2 ND 0.1 790 2.1 1.9 6| 962/ 1.30 1.8 49
MEAN o 805 2.15 1.9 6.1) 976 1.25 1.80 50
REL % DIFF |** 3.73 4.65 0.00 3.28| 2.87] 8.00 0.00} 4.00
GROUP 3 #4348

SILVER |ALUMINUM |CADMIUM,CHROMIUM |COPPER |IRON |LEAD|NICKEL |{ZINC
REP 1 0.27 137 2.2 1.44 6.99] 450| 3.69 1.55] 129
REP 2 0.16 136 22 1.41 7.22{ 452} 370 1.52] 132
MEAN 0.215 136.5 2.2 ~ 1.425 7.105( 451 3.70 1.535] 1305
REL % DIFF 51.16 0.73 0 2.11 324 044| 0.27 195 23
GROUP 3 #4388

SILVER |ALUMINUM |CADMIUM|CHROMIUM COPPER [IRON [LEAD|NICKEL |ZINC
REP 1 0.13 199 1.57 1.65 8.18) 298] 342 1.05] 106
REP 2 0.12 183 1.6 1.64 799 272| 3.4 107 107
MEAN 0.125 191 1.585 1.645 8.085( 285 343 1.06{ 106.5
REL % DIFF 8.00 8.38 1.89 0.61 235] 9.12| 0.58 1.89 09
GROUP 4 #4365 *DIFFICULT TO GRIND(LARGE CHUNKS)

SILVER |(ALUMINUM |CADMIUM|CHROMIUM COPPER [IRON |LEAD|NICKEL |ZINC
REP 1 ND 0.1 360 4 27 11.6] 672 3.60 22| 139
REP 2 ND 01. 250 3.1 22 88| 483 270 1.7 104
MEAN ok 305 3.55 2.45 10.2| 577.5| 3.15 1.95| 121.5
REL % DIFF |*** 36.07 254 2041 27.45] 32.73| 28.57 25.64| 28.81
GROUP 4 #4415

SILVER JALUMINUM |CADMIUM|CHROMIUM|COPPER |IRON |LEAD|NICKEL [ZINC
REP 1 ND 0.1 318 2.7 2.5 79| 654 2.50 1.7 86
REP 2 0.12 302 2.5 23 7.8{ 639| 2.50 1.6 83
MEAN ek 310 2.6 24 7.85] 646.5| 2.50 1.65| 84.5
REL % DIFF | *** 5.16 7.7 8.33 1.27[ 232 0.00 6.06] 3.55
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Spiked Samples (mg/kg dry wt)
GROUP 1 #4345 SPIKED

SILVER |ALUMINUM |[CADMIUM |CHROMIUM [COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. 0.355 268 1.92 1.79 8.35 547 43 2.1 101
SPIKE ADDED 1.75 350 175 5.25 8.75 350 1.75 1.75 175
SPIKE RECOVERED 1.93 339 1.56 4.77 8.52 263 1.62 1.63 157
% RECOVERY 110 97 89 91 97 75 93 93 90
GROUP 1 #4359 SPIKED

SILVER |ALUMINUM |[CADMIUM |CHROMIUM (COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. ND 0.1 259 1.52 1.45 5.75 380 3.1 1.14 86
SPIKE ADDED 1.38 290 1.45 4.35 7.25 290 145 145 145
SPIKE RECOVERED 1.48 311 1.48 3.95 7.75 275 1.7 1.44 137
% RECOVERY 107 107 102 91 107 95 117 99 94
GROUP 2 #4370 SPIKED

SILVER |ALUMINUM |[CADMIUM |CHROMIUM |[COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. NDO.1 182 0.83 0.63 4.35 233 0.7IND 0.8 73
SPIKE ADDED 1.29 258 1.29 3.87 6.45 258 1.29 1.29 129
SPIKE RECOVERED 1.34 262 1.07 3.27 6.15 196 1.04 1.6 111
% RECOVERY 104 102 83 84 95 76 81 124 86
GROUP2 #4398 SPIKED

SILVER |ALUMINUM |[CADMIUM [CHROMIUM |COPPER |[IRON LEAD NICKEL |ZINC
SAMPLE RES. ND.02 805 2.15 1.9 6.1 976 1.3 1.8 50
SPIKE ADDED 1.09 218 1.09 3.27 5.45 218 1.09 1.09 109
SPIKE RECOVERED 1.01 181 0.85 2.8 4.8 104 0.82 0.8 93
% RECOVERY 93 83 78 86 88 48 75 73 85
GROUP 3 # 4348 SPIKED

SILVER |ALUMINUM |CADMIUM |CHROMIUM |COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. 0.2 136.5 22 1.425 7.11 451 3.695 1.535 130.5
SPIKE ADDED 1.82 364 1.82 5.46 9.1 364 1.82 1.82 182
SPIKE RECOVERED 1.8 391 1.68 5.095 8.59 318 1.655 1.655 173
% RECOVERY 99 107 92 93 94 87 91 91 95
GROUP 3 # 4388 SPIKED

SILVER |ALUMINUM |CADMIUM |CHROMIUM |COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. 0.1 191 1.59 1.65 8.09 285 34 1.06 106.5
SPIKE ADDED 1.56 312 1.56 4.68 7.8 312 1.56 1.56 156
SPIKE RECOVERED 141 305 1.45 4.22 7.51 255 1.37 1.37 148
% RECOVERY 90 98 93 90 96 82 88 88 95
GROUP 4 #4365 SPIKED

SILVER |ALUMINUM |CADMIUM |CHROMIUM |COPPER {IRON LEAD NICKEL |ZINC
SAMPLE RES. ND 0.1 305 3.55 2.45 10.2 577.5 3.15 1.95 121.5
SPIKE ADDED 3.28 656 3.28 9.84 16.4 656 3.28 3.28 328
SPIKE RECOVERED 3.28 620 2.52 8.75 14.4 425.5 1.87 2.74 308
% RECOVERY 101 95 77 89 88 65 57 84 94
GROUP 4 #4415 SPIKED

SILVER |ALUMINUM [CADMIUM [CHROMIUM {COPPER |IRON LEAD NICKEL |ZINC
SAMPLE RES. 0.12 310 26 24 7.85 646.5 25 1.65 84.5
SPIKE ADDED 2.27 454 227 6.81 11.35 454 227 227 227
SPIKE RECOVERED 2.3 528 2.53 6.95 12.35 530 2.38 2.37 239
% RECOVERY 1 116 111 102 109 117 105 104 105
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Percent Solids

sample # 4352| 4345 4351 4361| 4393| 4398| 4533| 4369
VALUE 1 1422 11.04] 14.17| 12.55| 1091] 16.66] 10.46| 15.72
VALUE2 14.17| 11.27| 14.12| 12.56] 10.98, 16.75| 10.43| 15.66
MEAN 14.195( 11.155| 14.145| 12.555| 10.945| 16.705| 10.445| 15.69
sample # 4386 4378| 4367 4365
VALUE 1 13.74 10.2| - 6.46] 5.98
VALUE 2 13.72| 10.08] 6.61 5.84
MEAN 13.73} 10.14; 6.535{ 5.91!
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